
Aperçu du modèle d’exécution
Map-Reduce et Spark -

Optimisation logique SQL

Master DAC – Bases de Données Large Echelle
Mohamed-Amine Baazizi

mohamed-amine.baazizi@lip6.fr
2020-2021

mailto:mohamed-amine.baazizi@lip6.fr

Plan

• Modèle d’exécution de Map-Reduce
• Modèle d’exécution de Spark

• Algèbre RDD
• Algèbre Dataset

...le but est de comprendre l’exécution pour savoir optimiser (les 3
séances suivantes)

Map Reduce : rappel par un exemple

• Entrée : n-uplets (station, annee, mois, temp, dept)
• Résultat : select annee, Max(temp) group by annee

7,2010,04,27,75
12,2009,01,31,78
41,2009,03,25,95
2,2008,04,28,76
7,2010,02,32,91

(2010,27)
(2009,31)
(2009,25)
(2008,28)
(2010,32)

(2008, [28])
(2009, [25, 31])
(2010, [27,32])

(2008, 28)
(2009, 31)
(2010, 32)

2008, 28
2009, 31
2010, 32

RésultatEntrée
Regroupement par clé

Shuffle

3

f(x)= Proj2,4(x)
g(a,b) = if(a>b) then a else b

(clé, val) (clé, [list-val])

Exécution HadoopMap Reduce

HDFS

7,2010,04,27,75
12,2009,01,31,7

41,2009,03,25,95
2,2008,04,28,76

7,2010,02,32,91

(2010, 27)
(2009,31)

(2010, 27)
(2009,31)

(2010, 27)
(2009,31)

(2010,27)
(2010,32)

(2008,28)

(2009,25)
(2009,31)

(2008, 28)
(2009, 31)
(2010, 32)

HDFS

Shuffle

4

Nœud 1

Nœud 2

Nœud 3

Nœud 1

Nœud 2

Nœud 3

Nœud 1

Nœud 2

Nœud 3

Entrée : n-uplets (station, annee, mois, temp, dept)
Résultat : select annee, Max(temp) group by annee

Phase Map

7,2010,04,27,75
12,2009,01,31,7

(2010, 27)

(2009, 31)

h() h=1

h=0

h=041,2009,03,25,95
2,2008,04,28,76

7,2010,02,32,91

h(cle)=cle mod 2

5

(2008, 28)

(2009, 25)
h=1

(2008, 28)

(2010, 27)

(2009, 31)

(2009, 25)

(2010, 32)

Phase Shuffle & Sort

7,2010,04,27,75
12,2009,01,31,7

(2010, 27)

(2009, 31)

h() h=1

h=0

h=0

(2008, [28])
(2010, [27, 32])

41,2009,03,25,95
2,2008,04,28,76

7,2010,02,32,91

(2009, [25, 31])

h(cle)=cle mod 2

6

(2008, 28)

(2009, 25)
h=1

(2008, 28)

(2010, 27)

(2009, 31)

(2009, 25)

(2010, 32)

Phase Reduce

7

(2008, [28])
(2010, [27, 32])

(2009, [25, 31])

(2008, 28)

(2010, 27)

(2009, 31)

(2009, 25)

(2010, 32)

(2009, [25, 31])

(2008, [28])
(2010, [27, 32])copie

copie

(2008, 28)
(2010, 32)

(2009, 31)

Max

Max

Combine

8

(2008, [28])
(2010, [32])

(2009, [31])

(2008, 28)

(2010, 27)

(2009, 31)

(2009, 25)

(2010, 32)

(2009, [31])

(2008, [28])
(2010, [32])copie

copie

(2008, 28)
(2010, 32)

(2009, 31)

Max

Max

Architecture Spark

9

Anatomy of a Spark Application

Spark Applications: The Big Picture
There are two ways to manipulate data in Spark

I Use the interactive shell, i.e., the REPL
I Write standalone applications, i.e., driver programs

Pietro Michiardi (Eurecom) Apache Spark Internals 15 / 80

Cycle de vie d’un programme Spark

10

Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks

Pietro Michiardi (Eurecom) Apache Spark Internals 19 / 80

Décomposition d’un programme
• Opération

• Transformation : crée une nouvelle RDD à partir d’autre(s) RDD
• locale : ex. map, filter
• distribuée : ex. join, reduceByKey

• Action : évalue la RDD en exécutant la chaine de transformation
• retourne type de base ou User Defined Type

• Stage
• Séquence de transformations locales
• terminée par une transformation distribuée ou par une action

• Plan
• Séquence de stages terminée par une action

11

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Optimisation
• Tirer profit du partitionnement effectué par transformation

précédentes
• jointure sur une clé pour laquelle les deux relations sont déjà

partitionnées

12

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Génération du plan d’exécution

13

Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks

Pietro Michiardi (Eurecom) Apache Spark Internals 19 / 80

• Regrouper les transformations
locales en un seul stage

• créer un nouveau stage à
chaque opération globale

Exemple : wordcount

14

reduceByKey

map

flatMap

textFile

collect

stage 0

stage 1
reduceByKey

map

flatMap

textFile

collect

DAG d’opérateurs DAG de Stages

val lines = sc.textFile(filename)
val words = lines.flatMap(x=>x.split(" "))
val pairs = words.map(x=>(x,1))
val counts = pairs.reduceByKey(_+_)
val results = counts.collect

Exécution du plan

15

Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks

Pietro Michiardi (Eurecom) Apache Spark Internals 19 / 80

• Chaque stage est exécuté par
une ou n tasks où n est le
nombre de partition de la RDD

Exécution du plan

• Affectation de tasks aux stages en privilégiant la localité des données
• exécuter une tâche dans le nœud de la partition

• Matérialisation des résultats produits pour chaque stage
• en cas de panne, par exemple perte de certaines partitions, ne recalculer que

celles-ci

16

Anatomy of a Spark Application

Spark Applications: The Big Picture
There are two ways to manipulate data in Spark

I Use the interactive shell, i.e., the REPL
I Write standalone applications, i.e., driver programs

Pietro Michiardi (Eurecom) Apache Spark Internals 15 / 80

Exécution du plan Wordcount

17

val lines = sc.textFile(filename)
val words = lines.flatMap(x=>x.split(" "))
val pairs = words.map(x=>(x,1))
val counts = pairs.reduceByKey(_+_)
val results = counts.collectAsMap

partition d’une RDD

action transformation

lines

words

pairs

counts

Node 1 Node 2

driverresults

reduceByKey

map

flatMap

textFile

collect

stage 1

stage 0

task

Bilan

• RDD comme couche physique
• Optimisation minimale

• Regrouper opérations en stage
• Exploiter partitionnement existant

• Absence d’optimisation logique

• Autres pistes d’optimisation
• Persistence des données fréquemment lues

• Responsabilité du programmeur

Evaluation de SQL sur Spark

19

SQL Query

DataFrame

Unresolved
Logical Plan Logical Plan Optimized

Logical Plan
Physical

Plans
Physical

Plans RDDs
Selected
Physical

Plan

Analysis Logical
Optimization

Physical
Planning

Co
st

 M
od

el

Physical
Plans

Code
Generation

Catalog

Figure 3: Phases of query planning in Spark SQL. Rounded rectangles represent Catalyst trees.

In total, the rules for the analyzer are about 1000 lines of code.

4.3.2 Logical Optimization

The logical optimization phase applies standard rule-based opti-
mizations to the logical plan. These include constant folding, pred-
icate pushdown, projection pruning, null propagation, Boolean ex-
pression simplification, and other rules. In general, we have found
it extremely simple to add rules for a wide variety of situations. For
example, when we added the fixed-precision DECIMAL type to Spark
SQL, we wanted to optimize aggregations such as sums and aver-
ages on DECIMALs with small precisions; it took 12 lines of code to
write a rule that finds such decimals in SUM and AVG expressions,
and casts them to unscaled 64-bit LONGs, does the aggregation on
that, then converts the result back. A simplified version of this rule
that only optimizes SUM expressions is reproduced below:
object DecimalAggregates extends Rule[LogicalPlan] {
/** Maximum number of decimal digits in a Long */
val MAX_LONG_DIGITS = 18

def apply(plan: LogicalPlan): LogicalPlan = {
plan transformAllExpressions {
case Sum(e @ DecimalType.Expression(prec, scale))

if prec + 10 <= MAX_LONG_DIGITS =>
MakeDecimal(Sum(UnscaledValue(e)), prec + 10, scale)

}
}

As another example, a 12-line rule optimizes LIKE expressions
with simple regular expressions into String.startsWith or
String.contains calls. The freedom to use arbitrary Scala code in
rules made these kinds of optimizations, which go beyond pattern-
matching the structure of a subtree, easy to express. In total, the
logical optimization rules are 800 lines of code.

4.3.3 Physical Planning

In the physical planning phase, Spark SQL takes a logical plan and
generates one or more physical plans, using physical operators that
match the Spark execution engine. It then selects a plan using a
cost model. At the moment, cost-based optimization is only used
to select join algorithms: for relations that are known to be small,
Spark SQL uses a broadcast join, using a peer-to-peer broadcast fa-
cility available in Spark.5 The framework supports broader use of
cost-based optimization, however, as costs can be estimated recur-
sively for a whole tree using a rule. We thus intend to implement
richer cost-based optimization in the future.

The physical planner also performs rule-based physical optimiza-
tions, such as pipelining projections or filters into one Spark map
operation. In addition, it can push operations from the logical plan
into data sources that support predicate or projection pushdown.
We will describe the API for these data sources in Section 4.4.1.

In total, the physical planning rules are about 500 lines of code.
5Table sizes are estimated if the table is cached in memory or comes from
an external file, or if it is the result of a subquery with a LIMIT.

4.3.4 Code Generation

The final phase of query optimization involves generating Java byte-
code to run on each machine. Because Spark SQL often operates on
in-memory datasets, where processing is CPU-bound, we wanted
to support code generation to speed up execution. Nonetheless,
code generation engines are often complicated to build, amounting
essentially to a compiler. Catalyst relies on a special feature of the
Scala language, quasiquotes [34], to make code generation simpler.
Quasiquotes allow the programmatic construction of abstract syn-
tax trees (ASTs) in the Scala language, which can then be fed to the
Scala compiler at runtime to generate bytecode. We use Catalyst to
transform a tree representing an expression in SQL to an AST for
Scala code to evaluate that expression, and then compile and run
the generated code.

As a simple example, consider the Add, Attribute and Literal tree
nodes introduced in Section 4.2, which allowed us to write expres-
sions such as (x+y)+1. Without code generation, such expressions
would have to be interpreted for each row of data, by walking down
a tree of Add, Attribute and Literal nodes. This introduces large
amounts of branches and virtual function calls that slow down ex-
ecution. With code generation, we can write a function to translate
a specific expression tree to a Scala AST as follows:
def compile(node: Node): AST = node match {
case Literal(value) => q"$value"
case Attribute(name) => q"row.get($name)"
case Add(left, right) =>
q"${compile(left)} + ${compile(right)}"

}

The strings beginning with q are quasiquotes, meaning that al-
though they look like strings, they are parsed by the Scala compiler
at compile time and represent ASTs for the code within. Quasiquotes
can have variables or other ASTs spliced into them, indicated using
$ notation. For example, Literal(1) would become the Scala AST
for 1, while Attribute("x") becomes row.get("x"). In the end, a
tree like Add(Literal(1), Attribute("x")) becomes an AST for
a Scala expression like 1+row.get("x").

Quasiquotes are type-checked at compile time to ensure that only
appropriate ASTs or literals are substituted in, making them signif-
icantly more useable than string concatenation, and they result di-
rectly in a Scala AST instead of running the Scala parser at runtime.
Moreover, they are highly composable, as the code generation rule
for each node does not need to know how the trees returned by its
children are constructed. Finally, the resulting code is further opti-
mized by the Scala compiler in case there are expression-level opti-
mizations that Catalyst missed. Figure 4 shows that quasiquotes let
us generate code with performance similar to hand-tuned programs.

We have found quasiquotes very straightforward to use for code
generation, and we observed that even new contributors to Spark
SQL could quickly add rules for new types of expressions. Quasiquotes
also work well with our goal of running on native Java objects:

(1) Vérifier l’existence des
attributs, extraire leurs types

(2) Appliquer les équivalences algébriques,
éliminer sous-requetes, simplifier les
expressions

(3) Générer plusieurs plans
physiques et choisir
l’optimal en terme de cout

(4) Générer un code
Spark optimisé

catalyst backend

(1) Génération du plan logique

• Plan logique = arbre d’opérateurs logique
• Analyse statique

• résolution des noms d’attributs en utilisant le catalogue
• Vérification du référencement des attributs

• Traduction SQL vers algèbre interne
• Opérations arithmétiques : +, -, …
• Fonctions d’agrégations : sum, avg, …
• Algèbre interne (DSL) :

• Project, Filter, Limit, Join, Union, Sort, Aggregate, UDFs, …

20

Illustration

21

val lineitem = spark.read.load(lineitem_t)
val part = spark.read...load(part_t)

val inner = lineitem.groupBy("PARTKEY")
avg("QUANTITY").

rename("avg(QUANTITY)","p_quantity")

val outer = lineitem.join(part, "PARTKEY")
.select("PARTKEY",

"QUANTITY",

"EXTENDEDPRICE")

val q17 = inner.join(outer, "PARTKEY")

.where("p_quantity<QUANTITY")

.agg(sum($"EXTENDEDPRICE")/7)

Tpch Q17 simplifiée

p_quantity

lineitem part

Repartition 6 Repartition 1

inner join

lineitem

Repartition 6

aggregate

inner join

project renamePARTKEY,
QUANTITY,
EXTENDEDPRICE

Plan logique

Filter p_quantity < QUANTITY

aggregate

PARTKEY=
PARTKEY

PARTKEY=
PARTKEY

Sum(EXTENDEDPRICE)

PARTKEY,
QUANTITY

PARTKEY

(2) Optimisation du plan logique

• Catalyst : réécriture de l’arbre d’opérateurs
• Spark 2.4 : plus de 100 règles regroupées par lots (batch)
• Quasiquotes Scala, pas de documentation précise (analyse code)
• Déclenchement : une seule fois, point fixe (nb itérations 100)
• Quelques règles utiles

• Elimination des sous-requêtes
• ColumnPruning : Elimination des attributs inutiles
• CollapseProject : Combinaison des projections
• PushDownPredicate et PushPredicateThroughJoin : évaluation des filtres le plus en amont

possible et/ou en concomitance des jointures
• InferFiltersFromConstraints : rajouter des filtres en fonction de la sémantique des opérateurs
• Elimination des distincts et des sorts
• expansion des constantes, réécriture des filtres

22

Signatures de opérateurs algébriques
• Structure récursive

• Op(arg1, …, argn, child), où child est un arbre désignant un plan logique
• op.used désignent la liste des attributs utilisés
• op.returned désignent la liste des attributs retournés
• op.argi pour accéder à l’argument (comme pour un objet)

• Quelques exemples
• Filter(cond, child) : cond est la condition à vérifier
• Project(projList, child) : projList est la liste d’attributs à projeter
• Aggregate(grpExp, aggExp, child)

• grpExp : attributs de partitionnement
• aggExp : fonctions d’agrégation

• Join(left, right, joinType, condition)
• left et right: plans
• joinType : inner, outer, full, cross, …

23

Lot ColumnPruning
Règle d’élimination des attributs inutiles

cas op = Project(_, p2 : Project)
• si p2.returned ⊄ op.used /*certains attributs de p2 inutiles pour op*/

• alors p2.projList := p2.projList ∩ op.user /*les éliminer*/

24

Project

Used : a1, a2

…

Project

Returned : a1,a2, b1,b2 Project

Used : a1, a2

…

Project

Returned : a1,a2, b1, b2

Lot ColumnPruning
Règle d’éliminations des agrégations inutiles
cas op = Project(_, a: Aggregate)

• si a.returned ⊄ op.used /*certains attributs de a inutiles pour op*/

• alors a.AggExp = a.AggExp.filter(op.used) /*n’effectuer que les agrégations sur les attributs
utiles pour op*/

25

aggregate

…

Project

Partition : a1,a2
Agrégations : avg(b1), sum(b2)

aggregate

…

Project

Partition : a1,a2
Agrégations : avg(b1), sum(b2)

Used : a1, a2, b2

Règle PushDownPredicate
cas op=Filter(cond, Project(_, child))

• si cond est déterministe et peut être poussée
• alors Filter(cond, Project(_, Filter(cond, child)))
• Filter le plus externe sera éliminé après des vérifications

26

Project

cond

child

Filter

Project

cond

child

Filter

Filter cond

Project

cond

child

Filter

Filter cond

Règle PushPredicateThroughJoin
• Diviser la condition en 2 sous-conditions qui pourraient

être évaluées dans une des branches de la jointure et une
évaluée avec la jointure
• Filter(condF, Join(left, right, joinType, CondJ)

• Diviser condF en leftCond, rightCond et joinCond
• cas joinType = Inner

• newLeft := left où child = Filter(condLeft, child)
• newRight idem
• newCondJ := CondJ + joinCond

27

inner join

Left Right

New Inner join

Left Right

condFFilter

Filter FiltercondLeft condRight

condJ + condJoin

Cond restant, si existentFilter

Règle InferFiltersFromConstraints
• Conditions qui s’ajoutent à des filtres existants ou à des jointures en

function des contraintes sémantiques des opérateurs
• Ex. l’attribut de jointure ne doit pas être Null

• Comme pour PushPredicateThroughJoin. diviser la condition en
sous-conditions à propager

• Join(left, right, type, CondJ)
• cas joinType = Inner

• Extraire toutes les contraintes pour left et right et en extraire les filtres
• Rajouter le filtre isNotNull sur les attributs de jointure

28

inner join

Left Right

inner join

Left Right

Filter isNotNull(A)
…..

Filter isNotNull(A)
….

Left.A=right.A

29

PARTKEY=
PARTKEY

PARTKEY=
PARTKEY

PARTKEY,
p_quantity

lineitem part

Repartition 6 Repartition 1

inner join

project

lineitem

Repartition 6

aggregate

inner join

project

project project

Attributs des
deux DS

PARTKEY,
QUANTITY,
EXTENDEDPRICE

Attributs des
deux DS

Filter p_quantity < QUANTITY

aggregate Sum(EXTENDEDPRICE)

Plan logique Q17

PARTKEY,
QUANTITY

PARTKEY

Filter

30

lineitem part

Repartition 6 Repartition 1

inner join

project

lineitem

Repartition 6

aggregate

inner join

project

project project

Attributs des
deux DS

PARTKEY,
QUANTITY,
EXTENDEDPRICE

Attributs des
deux DS

Filter

isnotNull(PARTKEY)

aggregate

PARTKEY,
p_quantity

Filter

isnotNull(PARTKEY)
&&
isnotNull(QUANTITY) Filter

PARTKEY,
QUANTITY

Project
PARTKEY,
QUANTITY,
EXTENDEDPRICE

Project PARTKEY

isnotNull(PARTKEY)

Project

Filter isnotNull(p_Quantity)

EXTENDEDPRICE

p_quantity < QUANTITY
&& PARTKEY=PARTKEY

PARTKEY=
PARTKEY

Sum(EXTENDEDPRICE)

Plan logique Q17 optimisé

PARTKEY,
QUANTITY

PARTKEY

p_quantity < QUANTITY

Attention sens
de lecture inversé

(3) Génération du plan physique

• Phase 1 : Transformer le plan logique en un plan physique
• Phase 2 : appliquer règles d’optimisation
• Stade préliminaire de développement dans Spark 2.4

• Pipelining d’opération (filter et project)
• Choix entre jointure par hachage et diffusion en fonction de la taille des

données
• Utilisation du cout pour réordonner les jointures?

• Optimisation adaptative en Spark 3.0 (à découvrir)

31

3232

Broadcast Hash join

Sort Merge join

project

project
PARTKEY,
QUANTITY,
EXTENDEDPRICE

Filter

lineitem

isnotNull(PARTKEY)

Project
PARTKEY,
QUANTITY,
EXTENDEDPRICE

part

Filter

isnotNull(PARTKEY)
&&
isnotNull(QUANTITY)

Project PARTKEY

EXTENDEDPRICE

p_quantity < QUANTITY
&& PARTKEY=PARTKEY

PARTKEY=PARTKEY

Sum(EXTENDEDPRICE)

Plan physique Q17
lineitem

hash aggregate

Filter

PARTKEY,
QUANTITY

isnotNull(PARTKEY)

Project

PARTKEY,
QUANTITY

PARTKEY, avg(QUANTITY)

hash aggregate idem

Filter isnotNull(p_quantity)

Sort PARTKEY

Broadcast

Sort PARTKEY

hash aggregate

hash aggregate Sum(EXTENDEDPRICE)

A voir plus en détail les
prochaines séances

Autres pistes
d’optimization

• L’organisation physique des données
compte!
• Format de stockage colonnes :

ORC, parquet
• Partitionnement sur disque
• persistance de données accédés en

répétition (ex. jeux d’entrainement)

