Aperçu du modèle d'exécution Map-Reduce et Spark -Optimisation logique SQL

> Master DAC – Bases de Données Large Echelle Mohamed-Amine Baazizi <u>mohamed-amine.baazizi@lip6.fr</u> 2020-2021

Plan

- Modèle d'exécution de Map-Reduce
- Modèle d'exécution de Spark
 - Algèbre RDD
 - Algèbre Dataset

...le but est de comprendre l'exécution pour savoir optimiser (les 3 séances suivantes)

Map Reduce : rappel par un exemple

- Entrée : n-uplets (station, annee, mois, temp, dept)
- Résultat : select annee, Max(temp) group by annee

Exécution Hadoop Map Reduce

Entrée : n-uplets (station, **annee**, mois, **temp**, dept) **Résultat** : select annee, Max(temp) group by annee

Phase Map

Phase Shuffle & Sort

Phase Reduce

Combine

Architecture Spark

Cycle de vie d'un programme Spark

Décomposition d'un programme

- Opération
 - Transformation : crée une nouvelle RDD à partir d'autre(s) RDD
 - locale : ex. map, filter
 - distribuée : ex. join, reduceByKey
 - Action : évalue la RDD en exécutant la chaine de transformation
 - retourne type de base ou User Defined Type
- Stage
 - Séquence de transformations locales
 - terminée par une transformation distribuée ou par une action
- Plan
 - Séquence de *stages* terminée par une action

join with inputs not co-partitioned

Optimisation

- Tirer profit du partitionnement effectué par transformation précédentes B: A: • jointure sur une clé pour laquelle les deux
 - partitionnées

Génération du plan d'exécution

Exemple : wordcount

Exécution du plan

Exécution du plan

- Affectation de *tasks* aux stages en privilégiant la localité des données
 - exécuter une tâche dans le nœud de la partition
- Matérialisation des résultats produits pour chaque stage
 - en cas de panne, par exemple perte de certaines partitions, ne recalculer que celles-ci

Exécution du plan Wordcount

Bilan

- RDD comme couche physique
 - Optimisation minimale
 - Regrouper opérations en stage
 - Exploiter partitionnement existant
 - Absence d'optimisation logique
- Autres pistes d'optimisation
 - Persistence des données fréquemment lues
 - Responsabilité du programmeur

Evaluation de SQL sur Spark

(1) Génération du plan logique

- Plan logique = arbre d'opérateurs logique
- Analyse statique
 - résolution des noms d'attributs en utilisant le catalogue
 - Vérification du référencement des attributs
- Traduction SQL vers algèbre interne
 - Opérations arithmétiques : +, -, ...
 - Fonctions d'agrégations : sum, avg, ...
 - Algèbre interne (DSL) :
 - Project, Filter, Limit, Join, Union, Sort, Aggregate, UDFs, ...

Illustration

(2) Optimisation du plan logique

- Catalyst : réécriture de l'arbre d'opérateurs
 - Spark 2.4 : plus de 100 règles regroupées par lots (batch)
 - Quasiquotes Scala, pas de documentation précise (analyse code)
 - Déclenchement : une seule fois, point fixe (nb itérations 100)
 - Quelques règles utiles
 - Elimination des sous-requêtes
 - ColumnPruning : Elimination des attributs inutiles
 - CollapseProject : Combinaison des projections
 - *PushDownPredicate* et *PushPredicateThroughJoin* : évaluation des filtres le plus en amont possible et/ou en concomitance des jointures
 - InferFiltersFromConstraints : rajouter des filtres en fonction de la sémantique des opérateurs
 - Elimination des distincts et des sorts
 - expansion des constantes, réécriture des filtres

Signatures de opérateurs algébriques

- Structure récursive
 - Op(arg₁, ..., arg_n, child), où child est un arbre désignant un plan logique
 - op.used désignent la liste des attributs utilisés
 - op.returned désignent la liste des attributs retournés
 - op.arg_i pour accéder à l'argument (comme pour un objet)
- Quelques exemples
 - Filter(cond, child) : cond est la condition à vérifier
 - Project(projList, child) : projList est la liste d'attributs à projeter
 - Aggregate(grpExp, aggExp, child)
 - grpExp : attributs de partitionnement
 - aggExp : fonctions d'agrégation
 - Join(left, right, joinType, condition)
 - left et right: plans
 - joinType : inner, outer, full, cross, ...

Lot *ColumnPruning* Règle d'élimination des attributs inutiles

cas op = Project(_, p₂ : Project)

- si p2.returned ⊄ op.used /*certains attributs de p2 inutiles pour op*/
- alors p2.projList := p2.projList \cap op.user /*les éliminer*/

Lot *ColumnPruning* Règle d'éliminations des agrégations inutiles

cas op = Project(_, a: Aggregate)

- si a.returned ⊄ op.used /*certains attributs de a inutiles pour op*/
- alors a.AggExp = a.AggExp.filter(op.used) /*n'effectuer que les agrégations sur les attributs utiles pour op*/

Règle PushDownPredicate

cas op=Filter(cond, Project(_, child))

- si cond est déterministe et peut être poussée
- alors Filter(cond, Project(_, Filter(cond, child)))
- Filter le plus externe sera éliminé après des vérifications

Règle PushPredicateThroughJoin

- Diviser la condition en 2 sous-conditions qui pourraient être évaluées dans une des branches de la jointure et une évaluée avec la jointure
- Filter(condF, Join(left, right, joinType, CondJ)
 - Diviser condF en leftCond, rightCond et joinCond
 - cas joinType = Inner
 - newLeft := left où child = Filter(condLeft, child)
 - newRight idem
 - newCondJ := CondJ + joinCond

Règle InferFiltersFromConstraints

- Conditions qui s'ajoutent à des filtres existants ou à des jointures en function des contraintes sémantiques des opérateurs
 - Ex. l'attribut de jointure ne doit pas être Null
- Comme pour *PushPredicateThroughJoin*. diviser la condition en sous-conditions à propager
- Join(left, right, type, CondJ)
 - cas joinType = Inner
 - Extraire toutes les contraintes pour left et right et en extraire les filtres
 - Rajouter le filtre isNotNull sur les attributs de jointure

Plan logique Q17

Plan logique Q17 optimisé

30

(3) Génération du plan physique

- Phase 1 : Transformer le plan logique en un plan physique
- Phase 2 : appliquer règles d'optimisation
- Stade préliminaire de développement dans Spark 2.4
 - Pipelining d'opération (filter et project)
 - Choix entre jointure par hachage et diffusion en fonction de la taille des données
 - Utilisation du cout pour réordonner les jointures?
- Optimisation adaptative en Spark 3.0 (à découvrir)

Autres pistes d'optimization

- L'organisation physique des données compte!
 - Format de stockage colonnes : ORC, parquet
 - Partitionnement sur disque
 - persistance de données accédés en répétition (ex. jeux d'entrainement)

33