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Plan

•  Aperçu Hadoop file system et Map Reduce
•  Exécution algèbre RDD dans Spark
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HDFS (HaDoop File System)

•  Système de gestion de données distribuées 
•  Passage à l’échelle (Peta octets, 4500 nœuds)
•  Tolérance aux pannes grâce à la réplication 
•  Optimisé pour les lectures, écritures rares
•  Fichier = plusieurs blocks 
–  taille standard 128 MB
–  facteur de réplication 3, distribution sur différents 

nœuds
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Architecture HDFS
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Architecture		
Master/Slave		



Architecture HDFS : composants
•  Un NameNode par cluster : 
– Contient métadonnées pour localiser les blocs 

•  Un DataNode par nœud
– création, suppression, réplication, lecture et 

écriture de blocks sous l’ordre du NameNode
•  Etapes de création d’un fichier
– consulter NameNode pour disponibilité
– découpage en blocs et envoi aux DataNode
– demande de réplication
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Illustration de HDFS	
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Démo HDFS
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home$	hadoop	fs	-ls	–h	/tpch/lineitem.tbl	
-rw-r--r--			3	bdle	supergroup				718.9	M	...	
	
home$	hdfs	fsck	/tpch/lineitem.tbl	
	
Total	size: 	753849433	B	
	Total	dirs: 	0	
	Total	files: 	1	
	Total	symlinks: 	 	0	
	Total	blocks	(validated):	6	(avg.	block	size	125641572	B)	
	Minimally	replicated	blocks: 	6	(100.0	%)	
	Over-replicated	blocks: 	0	(0.0	%)	
	…	
	Default	replicaBon	factor: 	3	
	..	
	Number	of	data-nodes:	 	5	
	Number	of	racks: 	 	1	



Démo HDFS	
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home$	hdfs	fsck	/tpch/lineitem.tbl		-blocks	-locaBons	-files	
	
0.	BP-Number-IPAddr-Number:	len=134217728	repl=3	[Datanode1,	
Datanode2,	Datanode2]		
	
1.	BP-Number-IPAddr-Number:	len=134217728	repl=3	[Datanode1,	
Datanode2,	Datanode2]		
	
…	
	
5.	BP-Number-IPAddr-Number:	len=134217728	repl=3	[Datanode1,	
Datanode2,	Datanode2]		
	

Possibilité	d’uBliser	interface	graphique	



Exécution Hadoop Map Reduce

HDFS
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Nœud	1	

Nœud	2	

Nœud	3	

Nœud	1	

Nœud	2	
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Nœud	2	

Nœud	3	

Entrée : n-uplets (station, annee, mois, temp, dept)
Résultat :  select annee, Max(temp) group by annee



Exécution Map Reduce
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Exécution Map Reduce
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Exécution Hadoop Map Reduce
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Exécution Hadoop Map Reduce
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Spark avec HDFS
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Anatomy of a Spark Application

Spark Applications: The Big Picture
There are two ways to manipulate data in Spark

I Use the interactive shell, i.e., the REPL
I Write standalone applications, i.e., driver programs

Pietro Michiardi (Eurecom) Apache Spark Internals 15 / 80



Composants Spark
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-  Driver : prog. utilsant API Spark pour spécifier les calculs d’une application

-  Executor : processus lancé par une application, un par worker (par défaut)

-  Task : unité d’exécution réalisée par un executor (plusieurs )
 



Cycle de vie d’un programme
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Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks

Pietro Michiardi (Eurecom) Apache Spark Internals 19 / 80



Terminologie
•  Opération

–  Transformation : crée une nouvelle RDD à partir d’autre(s) RDD
•  retourne RDD du type de la transformation (MappedRDD, …)
•  locale (map, filter) ou distribuée (join, reduceByKey)�

–  Action : évalue la RDD en exécutant la chaine de transformation 
•  retourne type de base ou User Defined Type 

•  Stage : Séquence de transformations locales terminée par 
une transformation distribuée ou par une action
–  exécution pipelined des transformations locales

•  Plan : Séquence de stages terminée par une action

17	



Transformations locales	

•  Application sur les partitions locales 
– pas de shuffle (pas de matérialisation de données 

intermédiaires)
– map, filter, union, flatMap, mapValues
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union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.



Transformations distribuées 	

•  Accès requis à toutes les partitions
– Matérialisation du résultat intermédiaire pour le 

passer au stage suivant
–  join, reduceByKey, groupByKey, distinct, intersect
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ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.
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plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-
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sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.
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map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
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sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.



Transformations distribuées 
s’exécutant localement	

•  Tirer profit du partitionnement effectué par 
transformation antérieure	
–  jointure sur une clé pour laquelle les deux relations 

sont déjà partitionnées
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ager [17], allowing it to share resources with Hadoop,
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a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).
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Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.
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sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.



Génération du plan d’exécution	
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Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks
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•  Regrouper les transformations 
locales en un seul stage

•   créer un nouveau stage à 
chaque opération globale	



Wordcount
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reduceByKey	

map	

flatMap	

textFile	

collect	

stage 0

stage 1
reduceByKey	

map	

flatMap	

textFile	

collect	

DAG d’opérateurs DAG de Stages

val	lines	=	sc.textFile(filename)	
val	words	=	lines.flatMap(x=>x.split("	"))	
val	pairs	=	words.map(x=>(x,1))	
val	counts	=	pairs.reduceByKey(_+_)	
val	results	=	counts.collectAsMap	



Wordcount illustré	
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Paris	
Londres	
Hadoop	

Apache	
Paris	
Foot	

Oracle	
Foot	
Londres	

ParBBon	1	

ParBBon	2	

ParBBon3	

(Paris,1)	
(Paris,1)	
(Foot,1)	

(Londres,1)	
(Londres,1)	

(Apache,1)	
(Hadoop,1)	

reduceByKey	map	

….	



TPCH Q17	
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val	inner	=	lineitem.	
	 	map{case(partkey,quanBty,_)=>	
	 	 	(partkey,quanBty)}	
	 	.groupByKey	

.mapValues(x=>.2*myAvg(x))	

val	outer	=	lineitem.map{case(partkey,quanBty,ext)=>	
	 	 	 	(partkey,(quanBty,ext))}	
	 	.join(part.map(x=>(x,null)))	
	 	.map{case(partkey,((quanBty,ext),_))=>	
	 	 	 	(partkey,(quanBty,ext))}	

val	query	=	inner.join(outer)	
	 	.filter{case(partkey,(t1,(quanBty,extended)))	
	 	 	=>quanBty<t1}	
	 	.map{case(partkey,(t1,(quanBty,extended)))	
	 	 	=>extended}	

	
val	res	=	query.sum/7	

lineitem.tbl	 part.tbl	

lineitem	 part	

map	 map	

groupByKey	
join	

mapValyes	

join	

filter	

map	

map	

map	

DAG d’opérateurs 
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lineitem.tbl	 part.tbl	

lineitem	 part	

map	 map	

groupByKey	
join	

mapValyes	

join	

filter	

map	

map	

map	 E	

D	

A	

B	
C	

A	

E	

D	

B	 C	

DAG d’opérateurs 

DAG de Stages



Enchainement des stages
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B	 C	 D	 A	 E	



Enchainement des stages
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B	 C	 D	 A	 E	

Stage	Id	 Desc.	 SubmiBed	 duraDon	 tasks	 Input	 Shuffle	Read	 Shuffle	Write	

4	 sum	 12:12:49	 2	s	 6	 74.5	MB	

3	 map	 12:12:41		 5	s	 6	 719.2	MB	 72.0	MB	

2	 map	 12:12:47	 2	s	 6	 72.0	MB	 783.4	KB	

1	 map	 12:12:41		 2	s	 2	 22.9	MB	 783.4	KB	

0	 map	 12:12:41		 5	s	 6	 719.2	MB	 71.2	MB	



Exécution du plan	
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Anatomy of a Spark Application

Lifetime of a Job in Spark

RDD Objects

rdd1.join(rdd2)

.groupBy(...)

.filter(...)

Build the operator DAG

DAG Scheduler

Split the DAG into

stages of tasks

Submit each stage and

its tasks as ready

Task Scheduler

Cluster(
manager(

Launch tasks via Master

Retry failed and strag-

gler tasks

Worker

Block&
manager&

Threads&

Execute tasks

Store and serve blocks

Pietro Michiardi (Eurecom) Apache Spark Internals 19 / 80

•  Chaque	stage	est	exécuté	par	
une	ou	n	tasks	où	n	est	le	
nombre	de	parBBon	de	la	RDD		
•  Cas	jointure	:	n	correspond	

au	plus	grand	nombre	de	
parBBons	des	deux	RDD	



Exécution du plan	

•  Affectation de tasks aux stages en privilégiant 
la localité des données
– exécuter une tâche dans le nœud de la partition
•  si partition dans HDFS, alors tâche du même dataNode

•  Matérialisation des résultats produits pour 
chaque stage
– en cas de panne, par exemple perte de certaines 

partitions, ne recalculer que celles-ci

29	



Exécution du plan Wordcount
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val	lines	=	sc.textFile(filename)	
val	words	=	lines.flatMap(x=>x.split("	"))	
val	pairs	=	words.map(x=>(x,1))	
val	counts	=	pairs.reduceByKey(_+_)	
val	results	=	counts.collectAsMap	

parBBon	d’une	RDD	

acBon	 transformaBon	

lines	

words	

pairs	

counts	

Node	1	 Node	2	

driver	results	

reduceByKey	

map	

flatMap	

textFile	

collect	

stage	1	

stage	0	

task	



Scénario réel
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Noeud Nb. 
tasks

Input
(Mo) 

Shuffle
Write
 (Mo)

Temps

1 5 640.3 41.3 1.2 min
2 4 512.3 32.8 49 s
3 4 494.2 32.8 47 s
4 4 512.3 34.3 46 s
5 5 640.3 41.9 1.2 min
Total 22 ~2.799 181.1

Stage 0
ShuffleMapStage

Noeud Nb. 
tasks

Shuffle
Read 
(Mo)

Temps

1 11 91.6 1.8 min

4 11 91.5 1 min
Total 22 181.1

Stage 1
ResultStage

Taille Shuffle write réduite
 car utilisation systématique du combiner

config. matériel : 5 nœuds de calcul+stockage, 20 cœurs/nœud
Données tiennent sur 22 blocs HDFS



Optimisation manuelle
•  Stage 1 utilise 22 tasks sur petites partitions 
•  fusionner les partitions pour réduire le nombre de tasks
coalesce(numPartitions: Int, shuffle: Boolean = false, partitionner …)
quand shuffle=true possibilité de déplacer les données 
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val	lines	=	sc.textFile(filename)	
val	words	=	lines.flatMap(x=>x.split("	"))	
val	pairs	=	words.map(x=>(x,1))	
val	counts	=	pairs.reduceByKey(_
+_).coalesce(2,	false)	
val	results	=	counts.collectAsMap	

Noeud Nb. 
tasks

Shuffle
Read 
(Mo)

Temps

1 1 91.6 23 s
4 1 91.5 25 s
Total 2 181.1

Stage 1



Exécution TPCH Q17	
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config. matériel : 5 nœuds de calcul+stockage, 20 coeurs/nœud
Lineitem : 719.2 MB, 6 blocs HDFS, 6*10^6 tuples
Part : 22.9 MB, 2 blocs HDFS,  2*10^5 tuples

Noeud Nb. 
tasks

Input
(Mo) 

Shuffle
Write
 (Mo)

Temps
(s)

1 2 207.0 20.5 9 
2 1 128.1 12.7 5 
3 2 256.1 25.4 10 
4 1 128.1 12.7 5 
Total 6

Stage 0

Noeud Nb. 
tasks

Input
(Mo) 

Shuffle
Write
 (Mo)

2 1 11.4 <1 5 
3 1 11.5 <1 10 
Total 2

Stage 1



Exécution TPCH Q17	
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Noeud Nb. 
tasks

Shuffle
Read
 (Mo)

Shuffle
Write
 (Mo)

Temps
(s)

1 1 12.0 7.3 2 
2 1 idem idem idem
3 1 idem idem idem
4 1 idem idem idem
5 2 24.0 14.6 5 
Total 6

Stage 2

Noeud Nb. 
tasks

Input
(Mo) 

Shuffle
Write
 (Mo)

Temps
(s)

1 2 207.0 8.8 9 
2 1 128.1 5.4 4
3 1 idem idem idem
4 1 idem idem idem
5 1 idem idem idem
Total 6

Stage 3

Stage 4

Noeud Nb. 
tasks

Shuffle Read(Mo) Temps

1 6 75 11



Exercice : SQL en Spark RDD

•  Select : map
•  Where : filter
•  Jointure : map puis join
•  Aggregation (fct) :
–   reduceByKey (fct), si fct associative
– groupByKey et fct’ équivalente à fct, sinon

•  Imbrication dans le from ou le select :
–   résultat intermediaries stocké dans une variable
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Exercice
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SELECT	sum(l_extendedprice)	/	7.0	AS	avg_yearly		
FROM	(SELECT	l_partkey,	0.2*	avg(l_quanBty)	AS	t1	

		FROM	lineitem	GROUP	BY	l_partkey)	AS	inner,		
	(SELECT	 	 	l_partkey,l_quanBty,l_extendedprice	 		
	FROM	lineitem,	part	
	WHERE	p_partkey	=	l_partkey)	AS	 	outer		

WHERE	outer.l_partkey	=	inner.l_partkey;	AND	outer.l_quanBty	<	inner.t1;		
	

Q17	TPCH	modifiée	

LINEITEM(ORDERKEY,PARTKEY,SUPPKEY,LINENUMBER,QUANTITY,EXTENDEDPRICE,	…)	
PART(PARTKEY,NAME,MFGR,BRAND,TYPE,SIZE,CONTAINER,RETAILPRICE,COMMENT)	

val	lineitem	=	sc.textFile(lineitem_t).map(x=>x.split(","))	
	 	.map(x=>(x(1).toInt,x(4).toInt,x(5).toDouble))	

	
val	part	=	sc.textFile(part_t).map(x=>x.split(","))	

	 	.map(x=>(x(0).toInt))	



Exercice	
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SELECT	l_partkey,	0.2*	avg(l_quanBty)	AS	t1	
		FROM	lineitem	GROUP	BY	l_partkey	 inner	

def	myAvg(tab:Iterable[Int])=tab.reduce(_+_)/tab.size	
val	inner	=	lineitem.map{case(partkey,quanBty,_)=>(partkey,quanBty)}	

	 	.groupByKey.mapValues(x=>.2*myAvg(x))	

(SELECT	 	
	l_partkey,l_quanBty,l_extendedprice	 		
	FROM	lineitem,	part	
	WHERE	p_partkey	=	l_partkey)	AS		outer		

val	outer	=	lineitem.map{case(partkey,quanBty,ext)=>(partkey,(quanBty,ext))}	
	 	.join(part.map(x=>(x,null)))	
	 	.map{case(partkey,((quanBty,ext),_))=>(partkey,(quanBty,ext))}	



Exercice	

38	

SELECT	sum(l_extendedprice)	/	7.0	AS	avg_yearly		
FROM	inner,	outer	
WHERE	outer.l_partkey	=	inner.l_partkey;	AND	outer.l_quanBty	<	inner.t1;		
	

val	query	=	inner.join(outer)	
	 	.filter{case(partkey,(t1,(quanBty,extended)))=>quanBty<t1}	
	 	.map{case(partkey,(t1,(quanBty,extended)))=>extended}	

	
val	res	=	query.sum/7	
	



TPCH Q17	
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val	inner	=	lineitem.	
	 	map{case(partkey,quanBty,_)=>	
	 	 	(partkey,quanBty)}	
	 	.groupByKey	

.mapValues(x=>.2*myAvg(x))	

val	outer	=	lineitem.map{case(partkey,quanBty,ext)=>	
	 	 	 	(partkey,(quanBty,ext))}	
	 	.join(part.map(x=>(x,null)))	
	 	.map{case(partkey,((quanBty,ext),_))=>	
	 	 	 	(partkey,(quanBty,ext))}	

val	query	=	(inner.join(outer)	
	 	.filter{case(partkey,(t1,(quanBty,extended)))	
	 	 	=>quanBty<t1}	
	 	.map{case(partkey,(t1,(quanBty,extended)))	
	 	 	=>extended}.sum)/7	

	

lineitem.tbl	 part.tbl	

lineitem	 part	

map	 map	

groupByKey	
join	

mapValyes	

join	

filter	

map	

map	

map	
A	faire	:	traduire	d’autres	requêtes	TPCH	et	observer	
leurs	plans	d’exécuDon	



Bilan Algèbre RDD

•  Algèbre riche
•  Optimisation limitée à la notion de stages
– Pas de notion de plan logique
– Code utilisateur difficile à optimiser contrairement 

aux langages déclaratifs comme SQL
– Absence de modèle de coût 
– Faible performances des agrégations  
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