BDLE Partie 2 : Programmation en Map-Reduce sous Spark

- 30-10-2020
 - Introduction à MapReduce Spark et Scala
- 06-11-2020
 - Interrogation de données structurées en Spark
- 20-11-2020
 - Aperçu du modèle d'exécution Map-Reduce et Spark -Optimisation logique
- 27-11-2020
 - Ouverture : préparation de données pour le machine Learning

Canaux de communication

- Le wiki entrée principale
 - Diapos de cours, liens vers notebooks Databricks
- Moodle science
 - Envoi de message par équipe pédagogique
 - Dépôt rendu des devoirs
- Mattermost
 - Entraide, @all pour cibler tout les participants
 (@baazizi pour me cibler si besoin)
- Zoom
 - Lien permanent, sert pour les cours et les TME

Infos générales

- Modalités d'évaluation
 - Dans l'attente de précisions du Master info
 - Devoirs maisons notés (pondération à définir)
 - Examen final très probable
- Devoir maison partie 2
 - Sujet du TME 27-11-2020
 - Préparation de données pour la classification
 - Utilisation API Dataframe et ML de Spark
- Conseils
 - Travail personnel requis
 - Finir les TME_n avant de commencer le TME_n+1
- Documentation
 - Articles de recherches (conférences SIGMOD, VLDB, ICDE, EDBT)
 - Evénements Spark (Spark AI Summit)
 - Medium, Stack overflow, ...

Introduction à Map Reduce, à Spark et à Scala

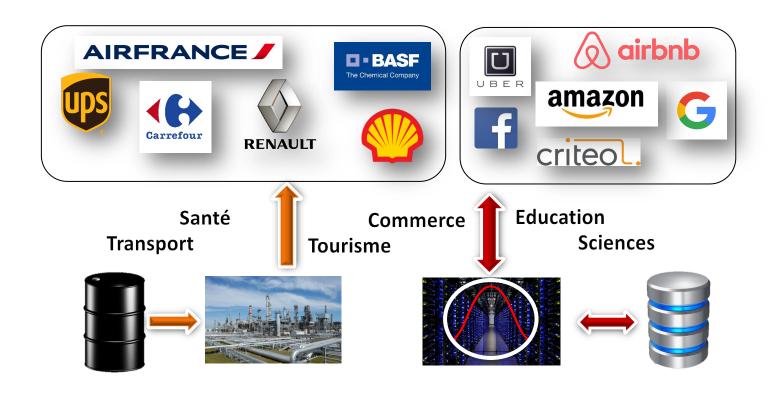
Master DAC – Bases de Données Large Echelle Mohamed-Amine Baazizi

mohamed-amine.baazizi@lip6.fr 2020-2021

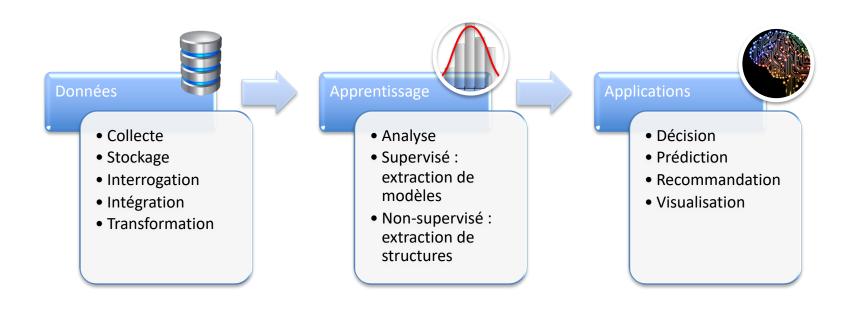
Plan

- Contexte et historique (30')
- Bases de Scala (40')
- L'algèbre RDD de Spark (30')

Données = Le pétrole du 21e siècle

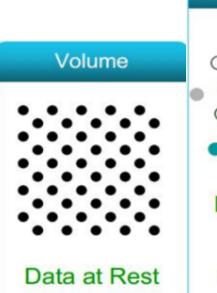


Big Data Pipeline



- Cycle more than a pipeline
- Data quality is a crucial issue: garbage in = garbage out

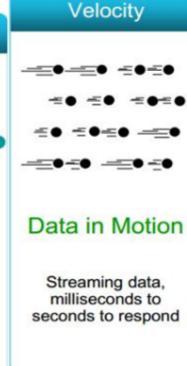
Caractérsitiques du big data

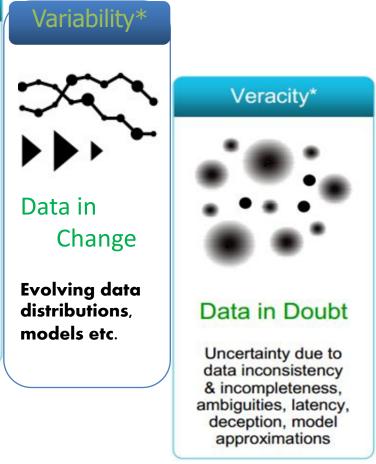


Terabytes to

exabytes of existing

data to process

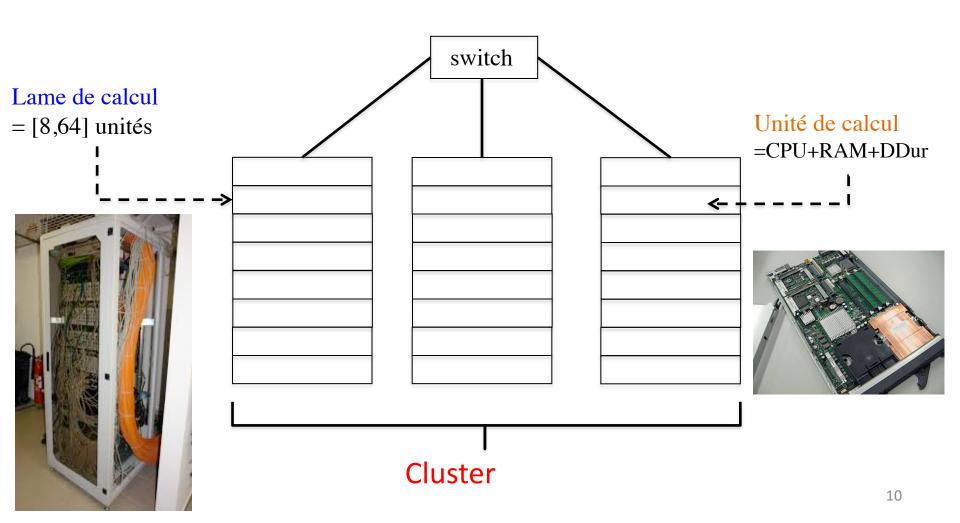




Relever le défi big data

- Systèmes distribués type cluster
 - à base de machines standard (commodity machines)
 - extensibles à volonté (architecture RAIN)
 - faciles à administrer et tolérants aux pannes
- Modèle de calcul distribué Map Reduce
 - calcul massivement parallèle, mode shared nothing
 - abstraction de la parallélisation (pas besoin de se soucier des détails sous-jacents)
 - plusieurs implantations (Hadoop, Spark, Flink...)

Architecture d'un cluster



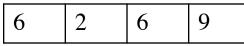
Origine du modèle Map Reduce

- Rappel: calcul massivement parallèle, mode *shared nothing*
- Programmation fonctionnelle fonctions d'ordre supérieur
- Map(f: T=>U), funaire: appliquer f à chaque élément de C
- Reduce(g:(T,T)=>T), g binaire

Illustration

- Map(f: T=>U), funaire: appliquer f à chaque élément de C

$$f(x)=x/2$$



la dimension de C est preservée le type en entrée peut changer

- Reduce(g:(T,T)=>T), g binaire
 - <u>agréger</u> les éléments de *C* deux à deux

23

réduit la dimension de *n* à 1

le type en sortie identique à celui en entrée

Adaptation pour le big data

• Type de données

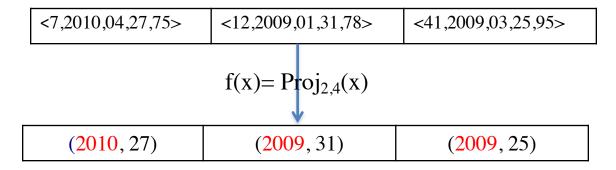
- logs de connections, transactions, interactions utilisateurs, texte, images
- structure homogène (schéma implicite)

• Type de traitements

- Aggrégations (count, min, max, avg) → group by
- Autres traitements (indexation, parcours graphes, Machine Learning)

Map Reduce pour le big data

- Les données en entrée sont des nuplets : identifier attribut de groupement (appelé clé)
- Map(f: T=>(k,U)), f unaire
 - produire une paire (clé, val) pour chaque val de C



• Regrouper les paires ayant la même clé pour obtenir (clé, [list-val])

(2009, [25, 31]) $(2010, [27])$

Map Reduce pour le big data

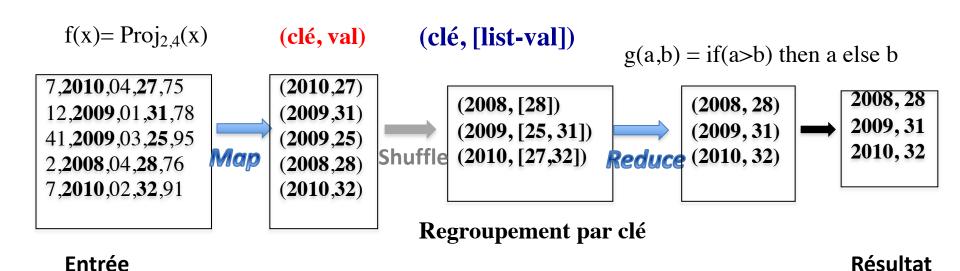
- Reduce(g:(T,T)=>T), g binaire
 - pour chaque (clé, [list-val]) produit (clé, val) où val = g([list-val])

(2009, [25, 31])	(2010, [27])
g(a,b) = if(a)	b) then a else b
(2009, 31)	(2010, 27)

• **Important** : dans certains systemes, g doit être **associatif** car ordre de traitment des élément de *C* non présrcit

Map Reduce : Exemple

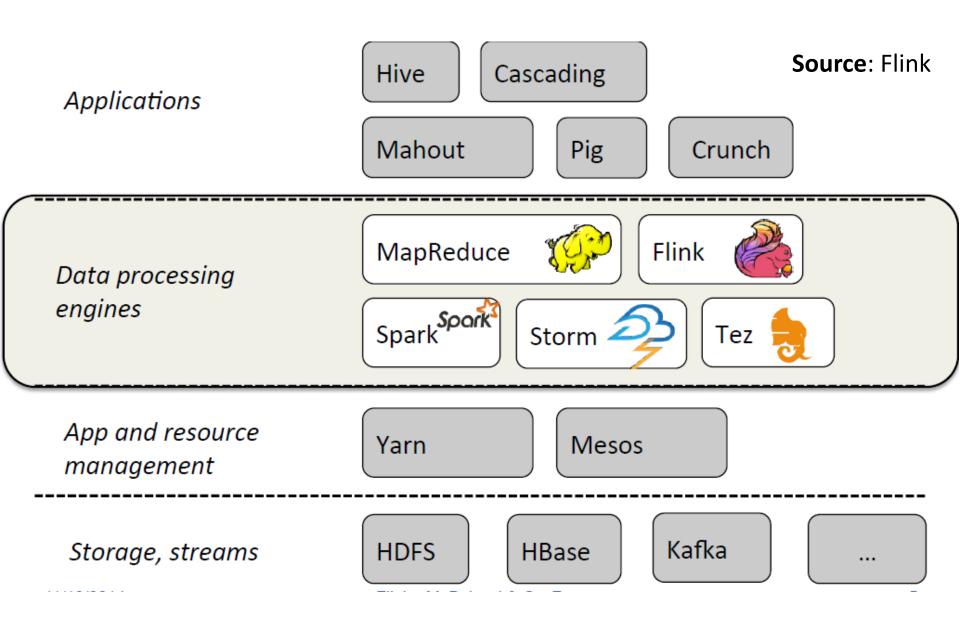
- Entrée : n-uplets (station, annee, mois, temp, dept)
- Résultat : select annee, Max(temp) group by annee



Plateformes Map Reduce

- Traitement distributé
 - Hadoop MapReduce (Google, 2004)
 - Spark (projet MPLab, U. Stanford, 2012)
 - Flink (projet Stratosphere, TU Berlin, 2009)
- Stockage
 - Hadoop FS, Hbase, Kafka
- Scheduler
 - Yarn, Mesos
- Systèmes haut niveau
 - Pig, Hive, Spark SQL

Open Source Big Data Landscape



Hadoop Map Reduce

- Introduit par Google en 2004
- Répondre à trois principales exigences
 - Utiliser cluster de machines standards
 - extensibles à volonté (architecture RAIN)
 - facilité d'administration, tolérance aux pannes
- Ecrit en Java. Utilisation autre langages possible
- Plusieurs extensions
 - Pig et Hive pour langage de haut niveau
 - HaLoop (traitement itératif), MRShare (optimisation)

Hadoop Map Reduce

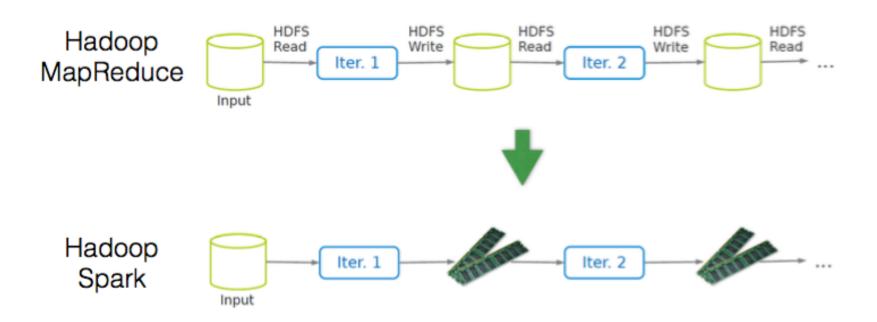


Limites de Hadoop Map Reduce

- Traitement complexes = performances dégradées
 - Traitement complexe = plusieurs étapes
 - Solution naïve : matérialiser résultat de chaque étape
 - avantages : reprise sur panne performante
 - inconvénients : coût élevé d'accès au disque
 - Solution optimisée : pipelining et partage
- Inadapté aux traitements itératifs (ML et analyse graphes)
- Pas d'interaction avec l'utilisateur

Spark

- Résoudre les limitations de Map Reduce
 - Matérialisation vs persistance en mémoire centrale
 - Batch processing vs interactivité (Read Execute Print Loop)



Spark

- Resilient Distributed Dataset (RDD)
 - collection logique de données distribuées sur plusieurs nœuds
 - traitement gros granule (pas de modification partielle)
 - tolérance aux pannes par réexécution d'une chaine de traitement
- Réutilisation de certains mécansimes de Map Reduce
 - HDFS pour le stockage des données et résultat
 - Quelques similitude dans le modèle d'exécution

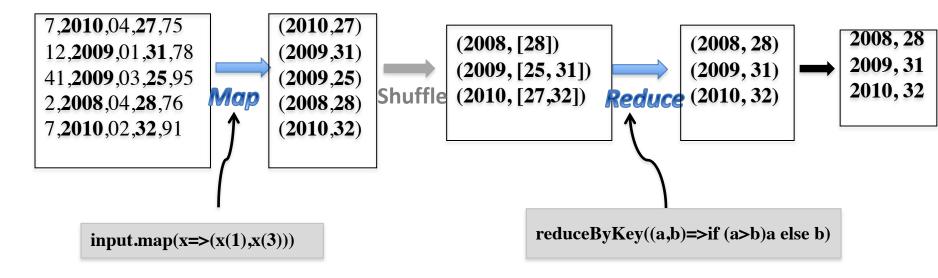
Pour ce cours

- Choix du système : Spark
 - Framework assez complet pour la préparation et l'analyse
 - Système interactif et de production à la fois
- Plusieurs langages hôtes
 - Scala (natif), Java, Python et R
 - API pour données structurées (relationnelles, JSON, graphes)
- Choix du langage hôte : Scala
 - langage natif de Spark
 - fonctionnel et orienté objet
 - concis, haut niveau
 - typage statique
 - détecter certains erreurs avant exécution

Programmer en Map Reduce

```
7,2010,04,27,75
                                          (2010.27)
                                                                                                                                                2008, 28
                                                                                                                   (2008, 28)
                                                                         (2008, [28])
12,2009,01,31,78
                                          (2009,31)
                                                                                                                                                2009, 31
                                                                         (2009, [25, 31])
                                                                                                                    (2009, 31)
41,2009,03,25,95
                                          (2009.25)
                                                                                                                                                2010, 32
                                                            Shuffle
                                                                                                    Reduce
                                                                         (2010, [27,32])
                                                                                                                   (2010, 32)
                             Map
                                          (2008,28)
2.2008.04.28.76
7,2010,02,32,91
                                          (2010,32)
import java.io.IOException;
                                                                                       import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
                                                                                       import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
                                                                                       import org.apache.hadoop.io.Text;
                                                                                       import org.apache.hadoop.mapreduce.Reducer;
public class MaxTemperatureMapper
 extends Mapper<LongWritable, Text, Text, IntWritable> {
                                                                                       public class MaxTemperatureReducer
 private static final int MISSING = 9999;
                                                                                         extends Reducer<Text, IntWritable, Text, IntWritable> {
 @Override
 public void map(LongWritable key, Text value, Context context)
                                                                                         @Override
    throws IOException, InterruptedException {
                                                                                         public void reduce(Text key, Iterable<IntWritable> values,
                                                                                             Context context)
  String line = value.toString();
  String year = line.substring(15, 19);
                                                                                             throws IOException, InterruptedException {
   int airTemperature;
   if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
                                                                                           int maxValue = Integer.MIN VALUE;
    airTemperature = Integer.parseInt(line.substring(88, 92));
                                                                                           for (IntWritable value : values) {
    airTemperature = Integer.parseInt(line.substring(87, 92));
                                                                                             maxValue = Math.max(maxValue, value.get());
   String quality = line.substring(92, 93);
   if (airTemperature != MISSING && quality.matches("[01459]")) {
                                                                     Java
                                                                                           context.write(key, new IntWritable(maxValue));
    context.write(new Text(year), new IntWritable(airTemperature));
```

Programmer en Spark



Scala

L'API RDD de Spark

API de base

- abstraction du parallélisme inter-machine
 - implantation du *Map* et *ReduceByKey* + autres opérateurs algébriques
- surcouche au-dessus de Scala
- gestion de la distribution des données (partitionnement)
- persistance de données

Bases de Scala

Scala en quelques mots

- Langage orienté-objet et fonctionnel à la fois
 - Orienté objet : valeur → objet, opération → méthode
 Ex: l'expression 1+2 signifie l'invocation de la méthode
 '+ ' sur des objets de la classe Int
 - Fonctionnel
 - Les fonctions se comportent comme des valeurs : peuvent être retournées ou passées comme arguments

```
Ex: Map(x = > f(x)) avec f(x) = x/2
```

• Les structures de données sont immuables (*immutable*) : les méthodes n'ont pas d'effet de bord, elles associent des valeurs résultats à des valeurs en entrée

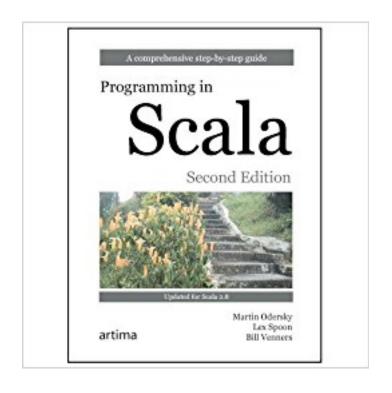
Ex: c=[2, 4, 6] c.Map(x=>f(x)) produit une nouvelle liste [1, 2, 3]

Avantages de Scala

- Compatibilité avec Java
 - compilation pour JVM, types de base de Java (Int, float, ..)
- Syntaxe concise
 - Nb ligne Scala = 50% NB lignes Java (en moyenne)
- Haut niveau d'abstraction
 - possibilité de cacher des détails à l'aide d'interfaces
- Typage statique
 - éviter certaines erreurs pendant l'exécution
- Inférence de type
 - code plus concis que les langages avec typage statique

Plan

- Premiers pas
- Types et opérations de base
- Structures de contrôle
- Types complexes
- Fonctions d'ordre supérieur



Référence bibliographique

M. Odersky, L. Spoon, B. Venners. *Programming in Scala*. 2nd Edition. 2012

https://booksites.artima.com/programming_in_scala_2ed

Ligne de commande

Mode interactif

Manipulations de base

scala> 1+2
res0: Int = 3

scala> res0+3
res1: Int = 6

res0	la valeur calculée
:Int	le type inféré
=3	la valeur calculée

scala> println("hello")
hello
scala>

Valeurs vs variables

• les valeurs sont immuables, i.e elles ne peuvent être modifiées

```
scala> val n=10
n: Int = 11
scala> n=n+1
<console>:12: error: reassignment
to val
   n=n+1
scala> var m=10
m: Int = 10
scala> m=m+1
m: Int = 11
```

On ne peut réaffecter une nouvelle valeur à *n* car déclarée avec **val**

On peut incrémenter *m* car déclarée avec **var**

Définition des fonctions

```
scala> def max(x: Int, y: Int): Int = if (x > y) x else y

max2: (x: Int, y: Int)Int

scala> max(1,3)

res3: Int = 3

scala> max(max(1,2),3)

res6: Int = 3

scala> def max(x: Int, y: Int): Int = {
    if (x > y)
    else
    y
    function body
    in curly braces
}
```

Le type retour inféré automatiquement sauf pour les fonctions récursives Type par défaut Unit : correspond à void en Java

```
scala> def bonjour() = println ("bonjour")
bonjour: ()Unit
```

Types et opérations de base

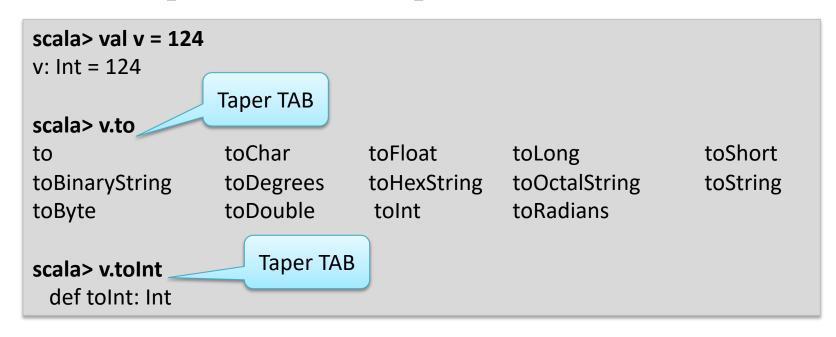
Table 5.1 · Some basic types

Value type	Range
Byte	8-bit signed two's complement integer (-2^7 to 2^7 - 1, inclusive)
Short	16-bit signed two's complement integer (-2^{15} to 2^{15} - 1, inclusive)
Int	32-bit signed two's complement integer (-2^{31} to 2^{31} - 1, inclusive)
Long	64-bit signed two's complement integer (-2^{63} to 2^{63} - 1, inclusive)
Char	16-bit unsigned Unicode character (0 to 2 ¹⁶ - 1, inclusive)
String	a sequence of Chars
Float	32-bit IEEE 754 single-precision float
Double	64-bit IEEE 754 double-precision float
Boolean	true or false

- Opérateurs arithmétiques : + * / %
- Opérateurs logiques : && ||!
- Opérateurs binaires ...
- Conversions: toInt toDouble toLowerCase toUpperCase
 - à explorer en mode interactif

Conversions de type

• Plusieurs possibilités, à explorer en mode interactif



Rappel: Paradigme fonctionnel, les structures retournent une valeur

- Conditions
- Boucles: while et foreach
 - à éviter car style impératif
 - On privilégiera les *map* (cf. fonctions d'ordre supérieur)
- Pattern matching

Conditions

if (cond) val **else** val

```
scala> val chaine = "abcde"
scala> val longueur =
    if (chaine.length %2 ==0) "pair"
    else "impair"
longueur: String = impair
```

à éviter car style impératif

• Boucles

while (cond) {val}

```
scala> var i = 2
scala> while (i<3) { println(i); i+=1 }
1
2</pre>
```

• Boucles

val.**foreach**(action)

```
scala> val txt = "hello"
scala> txt.foreach(print)
hello
scala> txt.foreach(println)
h
e
0
scala>
```

pattern matching

- branchement conditionnel à *n* alternatives
- exprimés par un pattern dans la clause case

```
var match {
  case v0 => res0
  case v1 => res1
  ...
  case _ => res_defaut
}
```

- le type tableau (Array)
 - <u>séquence</u> d'éléments (souvent du même type)
 - construction directe ou à partir de certaines fonctions comme le *split()*
 - accès indexé pour lecture ou écriture, indice 1^{er} élément = 0

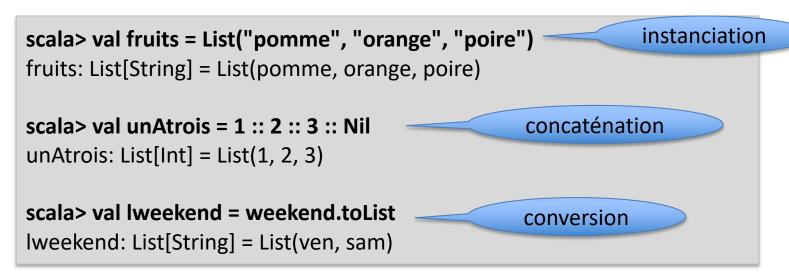
```
scala> val weekend = Array ("sam", "dim")
weekend: Array[String] = Array(sam, dim)

scala> weekend(0)
res6: String = sam

scala> weekend(1)
res7: String = dim
```

0 1
"sam" "dim"

- le type liste (List)
 - collection d'éléments (souvent du même type)
 - construction :
 - instanciation d'un objet List avec valeurs fournies
 - de manière récursive avec l'opérateur cons noté elem::liste
 - conversion d'un tableau



- Manipulation de listes
 - ajout en tête seulement (immuabilité)

```
scala> 4 :: unAtrois
res13: List[Int] = List(4, 1, 2, 3)

scala> val quatreAun = 4 :: unAtrois.reverse
quatreAun: List[Int] = List(4, 3, 2, 1)
```

- concaténation à l'aide de ::: - l'ordre interne est préservé

```
scala> val quatreAcinq = 4 :: 5 :: Nil
quatreAcinq: List[Int] = List(4, 5)

scala> val unAcinq = unAtrois ::: quatreAcinq
unAcinq: List[Int] = List(1, 2, 3, 4, 5)
```

• dés-imbrication de listes : la méthode *flatten*

```
scala> val nestd_unAcinq = List(unAtrois, quatreAcinq)
nestd_unAcinq: List[List[Int]] = List(List(1, 2, 3), List(4, 5))

scala> nestd_unAcinq.flatten
res19: List[Int] = List(1, 2, 3, 4, 5)

unAhuit: List[List[Any]] = List(List(List(1, 2, 3), List(4, 5)), List(6, 7))

scala> unAhuit.flatten
res24: List[Any] = List(List(1, 2, 3), List(4, 5), 6, 7)
```

Tuples

- Collection d'attributs relatifs à un object (cf. modèle rel.)
- Accès indexé avec ._index où index commence par 1
- structure immuable, construits souvent à partir de sources externes (ex. fichier csv)

- Tuples et pattern matching
 - possibilité de reconnaître la forme des tuples et d'enclencher un traitement spécifique en utilisant des variables

- Tableaux associatifs (map)
 - ensemble de paires (clé, valeur) unicité de clé clé et valeur de type quelconque mais fixés une fois pour toute
 - possibilité d'insertion et de mise à jour de nouvelles paires

```
scala> var capital = Map("US" -> "Washington", "France" -> "Paris")
capital...

scala> capital("US")
res2: String = Washington

scala>capital += ("US" -> "DC", "Japan" -> "Tokyo")

Map(US -> DC, France -> Paris, Japan -> Tokyo)
```

Classes

- Conteneurs pour objets ayant les mêmes attributs
- class MaClasse (nom: String, num: Int) { //attributs et méthodes – partie optionnelle }

```
scala> class Mesure(sid:Int, year:Int, value:Float)
defined class Mesure
```

```
scala> listeTemp.map{case(sid,year,month,value,zip)=>new
Mesure(sid,year,value)}
```

res2: List[Mesure] = List(Mesure@364c93e6, Mesure@66589252)

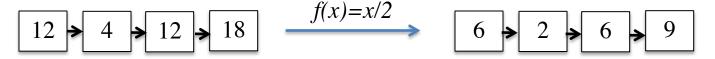
- case Classes
 - classes pour instancier des objets immuables
 - utiles pour le pattern matching!
 - case class MaClasse (nom: String, num: Int) { //attributs et méthodes - partie optionnelle }

scala> case class cMesure(sid:Int, year:Int, value:Float)
defined class cMesure

pas besoin de new

map

Map (f: T=>U), f unaire : applique f à chaque élément de C



la dimension de C est preservée mais le type en entrée peut changer

```
scala> def divide(n:Int) = n/2
succ: (n: Int)Int

scala> val l= List(12,4,12,18)

scala> l.map(x=>divide(x))
res1: List[Int] = List(6, 2, 6, 9)
```

- *l.flatMap(f)* : équivalent de *l.map(f)* suivi de *flatten*

```
scala> def succ(n:Int) = n+1
succ: (n: Int)Int

scala> nestd_unAcinq
res38: List[List[Int]] = List(List(1, 2, 3), List(4, 5))

scala> val deuxAsix = nestd_unAcinq.flatMap(succ)
deuxAsix: List[Int] = List(2, 3, 4, 5, 6)
```

-l.foreach(f): applique f à chaque élément sans retourner de valeur

```
scala> quatreAcinq.foreach(println)
4
5
```

- *filter(cond)*
 - cond retourne un booléen et permet de sélectionner les éléments de la liste sur laquelle filter est appliqué

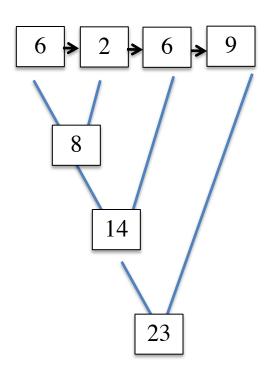
```
deuxAsix: List[Int] = List(2, 3, 4, 5, 6)
scala> deuxAsix.filter(x=>x%2 ==0)
```

res46: List[Int] = List(2, 4, 6)

la condition s'exprime avec => et signifie : retourner x si x est multiple de 2

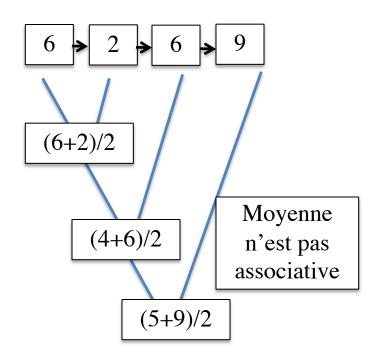
- Réduction : reduce
 - -l.reduce(g: (T,T)=>T): applique g sur les éléments de l

```
scala> def g(a:Int, b:Int) = {
println(a+"\t"+b)
a+b
scala> val l=List(6,2,6,9)
scala> l.reduce((a,b)=>g(a,b))
6
8
14
res17: Int = 23
```



- reduce ne marche que si g est associatif!
 - -l.reduce(g: (T,T)=>T): applique g sur les éléments de l

```
scala> def moyAB(a:Int, b:Int)=
     println(a+"\t"+b)
     (a+b)/2
scala> val l=List(6,2,6,9)
scala> l.reduce((a,b)=>moyAB(a,b))
6
res19: Int = 7
```



- reduce n'a de sens que si g est associatif!
 - -l.reduce(g: (T,T)=>T): applique g sur les éléments de l

scala> val l=List(6,2,6,9)

scala> val sum = l.reduce((a,b)=>a+b)

scala> val moy = sum/l.count()

pour calculer le moyenne, il faut calculer la somme puis diviser sur le taille de la liste!

Bien entendu, on peut utiliser la fonction avg() prédéfinie.

L'algèbre RDD de Spark

L'abstraction RDD

- Comment rendre la distribution des données et la gestion des pannes transparente?
- → Resilient Distributed Datasets (RDDs)
 - Structure de données distribuées : séquence d'enregistrements de même type
 - données distribuées → traitement parallèle
 - immuabilité : chaque opérateur crée une nouvelles RDD
 - évaluation lazy : plan pipeline vs matérialisation (M/R)

Exemple

```
1 val lines = spark.textFile("file.txt")
2 val data = lines.filter(_.contains( "word"))
3data.count
```

- 1- Chargement depuis fichier
- 2- Application d'un filtre simple
- 3- Calcul de la cardinalité

Lazy evaluation : count déclenche le chargement de file.txt et le filter

Avantage : seules les lignes avec "word" sont gardées en mémoire

Deux types de traitements

A la base du modèle d'exécution de Spark

Transformations

opérations qui s'enchainent mais ne s'exécutent pas opérations pouvant souvent être combinées Ex. map, filter, join, reduceByKey

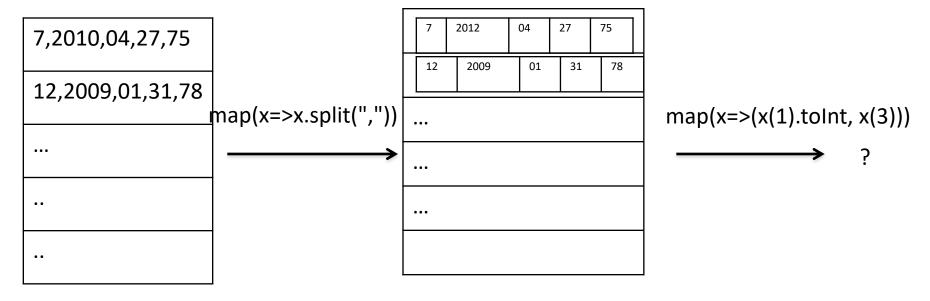
Actions

opérations qui lancent un calcul distribué elles déclenchent toute la chaine de transformations qui la précède

Ex. count, save, collect

$map(f:T\Rightarrow U)$:	: $RDD[T] \Rightarrow RDD[U]$
$filter(f: T \Rightarrow Bool)$:	$: RDD[T] \Rightarrow RDD[T]$
$flatMap(f : T \Rightarrow Seq[U])$:	$: RDD[T] \Rightarrow RDD[U]$
sample(fraction: Float):	: RDD[T] ⇒ RDD[T] (Deterministic sampling)
groupByKey() :	$: RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$
$reduceByKey(f:(V,V) \Rightarrow V)$:	$: RDD[(K, V)] \Rightarrow RDD[(K, V)]$
union() :	$: (RDD[T], RDD[T]) \Rightarrow RDD[T]$
join() :	$: (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
cogroup() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
crossProduct() :	$: (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$
$mapValues(f : V \Rightarrow W)$:	: RDD[(K, V)] ⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]):	$: RDD[(K, V)] \Rightarrow RDD[(K, V)]$
partitionBy(p : Partitioner[K]):	$: RDD[(K, V)] \Rightarrow RDD[(K, V)]$
count() :	$RDD[T] \Rightarrow Long$
collect() :	$RDD[T] \Rightarrow Seq[T]$
$reduce(f : (T,T) \Rightarrow T)$:	$RDD[T] \Rightarrow T$
lookup(k : K) :	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)
save(path: String):	Outputs RDD to a storage system, e.g., HDFS
	$filter(f: T \Rightarrow Bool) : flatMap(f: T \Rightarrow Seq[U]) : sample(fraction: Float) : groupByKey() : reduceByKey(f: (V, V) \Rightarrow V) : union() : join() : cogroup() : crossProduct() : mapValues(f: V \Rightarrow W) : sort(c: Comparator[K]) : partitionBy(p: Partitioner[K]) : count() : collect() : reduce(f: (T, T) \Rightarrow T) : lookup(k: K) : $

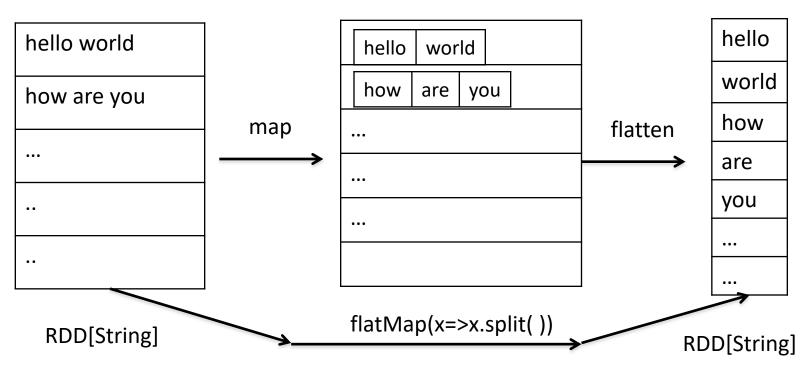
 $Map(f:T\Rightarrow U):RDD[T] \Rightarrow RDD[U]$



RDD[String]

RDD[Array[String]]

 $flatMap (f:T \Rightarrow Seq[U]) : RDD[T] => RDD[U]$



 $reduceByKey(f: (V, V) \Rightarrow V) : RDD[(K,V)] \Rightarrow RDD[(K,V)]$

(2010,27)

(2009,31)

(2008,28)

(2010,32)

(2009,25)

reduceByKey((a,b)=>if (a>b)a else b)

(2010,32)

(2009,31)

(2008,28)

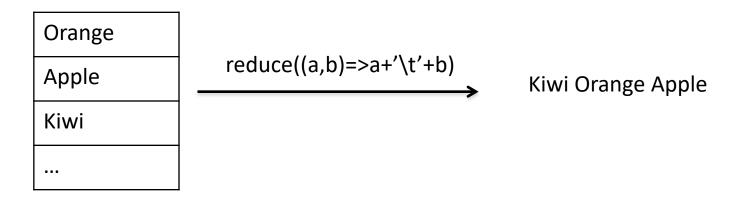
RDD[(Int, Double)]

RDD[(Int, Double)]

 $join(): (RDD[(K,V)], RDD[(K,W)]) \Rightarrow RDD[(K,(V,W))]$ films: RDD[(Int, String)] (1, ToyStory) (2, Heat) (1, (ToyStory, Animation)) (3, Sabrina) (2, (Heat, Thriller)) films.join(genres) genres: RDD[(Int, String)] (3, (Sabrina, Comedy)) (1, Animation) (2, Thriller) (3, Comedy)

reduce(f:(T,T)=>T):RDD[(T,T)]=>T

- Réduction de la dimension en utilisant une *User Defined Function (UDF)*
- Traitement distribué, aucun ordre prescris
 - \rightarrow dans Spark f doit être commutative et associative!



RDD et données structurées

- Constat sur l'utilisation des RDD
 - Pas d'exploitation du schéma par défaut
 - code peu lisible, programmation fastidieuse
 - Lorsque structure homogène, encapsuler chaque n-uplet dans un objet reflétant la structure
 - Performances dégradées (sérialisation d'objets, GC)
 - Absence d'optimisation logique (comme dans les SGBD)
- Pallier aux limites des RDD : API Dataset
 - Utiliser les schéma pour optimiser requêtes (SGBR)
 - et mieux organiser les données