
Derby Developer's Guide

77

Holdable result sets and autocommit

When autocommit is on, a positioned update or delete statement will automatically cause
the transaction to commit.

If the result set has holdability ResultSet.CLOSE_CURSORS_AT_COMMIT, combined
with autocommit on, Derby gives an exception on positioned updates and deletes
because the cursor is closed immediately before the positioned statement is commenced,
as mandated by JDBC. In contrast, no such implicit commit is done when using result set
updates methods.
Non-holdable result set example

The following example uses Connection.createStatement to return a ResultSet that will
close after a commit is performed.

Connection conn = ds.getConnection(user, passwd);
Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY,
 ResultSet.CLOSE_CURSORS_AT_COMMIT);

Locking, concurrency, and isolation
This section discusses topics pertinent to multi-user systems, in which concurrency is
important.

Derby is configured by default to work well for multi-user systems. For single-user
systems, you might want to tune your system so that it uses fewer resources; see Lock
granularity.

Isolation levels and concurrency
Derby provides four transaction isolation levels. Setting the transaction isolation level
for a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions.

For example, it allows you to specify whether transaction A is allowed to make changes
to data that have been viewed by transaction B before transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with
a way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setTransactionIsolation method
or the SQL SET ISOLATION statement.

If there is an active transaction, the network client driver always commits the active
transaction, whether you use the JDBC Connection.setTransactionIsolation method
or the SQL SET ISOLATION statement. It does this even if the method call or
statement does not actually change the isolation level (that is, if it sets the isolation
level to its current value). The embedded driver also always commits the active
transaction if you use the SET ISOLATION statement. However, if you use the
Connection.setTransactionIsolation method, the embedded driver commits the active
transaction only if the call to Connection.setTransactionIsolation actually changes the
isolation level.

Derby Developer's Guide

78

The names of the isolation levels are different, depending on whether you use a JDBC
method or SQL statement. The following table shows the equivalent names for isolation
levels whether they are set through the JDBC method or an SQL statement.

Table 6. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation Levels for JDBC Isolation Levels for SQL
Connection.TRANSACTION_READ_UNCOMMITTED
(ANSI level 0)

UR, DIRTY READ, READ
UNCOMMITTED

Connection.TRANSACTION_READ_COMMITTED (ANSI
level 1)

CS, CURSOR STABILITY,
READ COMMITTED

Connection.TRANSACTION_REPEATABLE_READ
(ANSI level 2)

RS

Connection.TRANSACTION_SERIALIZABLE (ANSI level
3)

RR, REPEATABLE READ,
SERIALIZABLE

These levels allow you to avoid particular kinds of transaction anomalies, which are
described in the following table.

Table 7. Transaction anomalies

Anomaly Example
Dirty Reads

A dirty read happens when a transaction
reads data that is being modified by
another transaction that has not yet
committed.

Transaction A begins.

UPDATE employee SET salary = 31650
WHERE empno = '000090'

Transaction B begins.

SELECT * FROM employee

(Transaction B sees data updated by
transaction A. Those updates have not yet
been committed.)

Nonrepeatable Reads

Nonrepeatable reads happen when a
query returns data that would be different
if the query were repeated within the
same transaction. Nonrepeatable reads
can occur when other transactions are
modifying data that a transaction is
reading.

Transaction A begins.

SELECT * FROM employee
WHERE empno = '000090'

Transaction B begins.

UPDATE employee SET salary = 30100
WHERE empno = '000090'

(Transaction B updates rows viewed
by transaction A before transaction A
commits.) If Transaction A issues the
same SELECT statement, the results will
be different.

Phantom Reads

Records that appear in a set being read by
another transaction. Phantom reads can
occur when other transactions insert rows
that would satisfy the WHERE clause of
another transaction's statement.

Transaction A begins.

SELECT * FROM employee
 WHERE salary > 30000

Transaction B begins.

INSERT INTO employee

Derby Developer's Guide

79

Anomaly Example
(empno, firstnme, midinit,
lastname, job,
salary) VALUES ('000350', 'NICK',
'A','GREEN','LEGAL COUNSEL',35000)

Transaction B inserts a row that would
satisfy the query in Transaction A if it were
issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

The following table shows which anomalies are possible under the various locking
schemas and isolation levels.

Table 8. When transaction anomalies are possible

Isolation Level
Table-Level

Locking
Row-Level

Locking
TRANSACTION_READ_UNCOMMITTED Dirty reads,

nonrepeatable
reads, and phantom
reads possible

Dirty reads,
nonrepeatable
reads, and phantom
reads possible

TRANSACTION_READ_COMMITTED Nonrepeatable
reads and phantom
reads possible

Nonrepeatable
reads and phantom
reads possible

TRANSACTION_REPEATABLE_READ Phantom reads not
possible because
entire table is
locked

Phantom reads
possible

TRANSACTION_SERIALIZABLE None None

The following java.sql.Connection isolation levels are supported:

• TRANSACTION_SERIALIZABLE

RR, SERIALIZABLE, or REPEATABLE READ from SQL.

TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues
locks to prevent all the transaction anomalies listed in Transaction anomalies from
occurring. The type of lock it issues is sometimes called a range lock.

• TRANSACTION_REPEATABLE_READ

RS from SQL.

TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent
only dirty reads and nonrepeatable reads, but not phantoms. It does not issue range
locks for selects.

• TRANSACTION_READ_COMMITTED

CS or CURSOR STABILITY from SQL.

Derby Developer's Guide

80

TRANSACTION_READ_COMMITTED means that Derby issues locks to prevent
only dirty reads, not all the transaction anomalies listed in Transaction anomalies.

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.
• TRANSACTION_READ_UNCOMMITTED

UR, DIRTY READ, or READ UNCOMMITTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

• Any row that is read during the unit of work to be changed by other application
processes.

• Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels
If a connection does not specify its isolation level, it inherits the default isolation level for
the Derby system. The default value is CS.

When set to CS, the connection inherits the TRANSACTION_READ_COMMITTED
isolation level. When set to RR, the connection inherits the
TRANSACTION_SERIALIZABLE isolation level, when set to RS, the connection inherits
the TRANSACTION_REPEATABLE_READ isolation level, and when set to UR, the
connection inherits the TRANSACTION_READ_UNCOMMITTED isolation level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an
SQL statement. For more information, see "SET ISOLATION statement" in the Derby
Reference Manual. You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the WITH clause, see
"SELECT statement" in the Derby Reference Manual.

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction. In most cases, the current transaction
is committed even if you set the isolation level in a way that does not change it (that is, if
you set it to its current value). See Isolation levels and concurrency for details.

Note: For information about how to choose a particular isolation level, see "Shielding
users from Derby class-loading events" in Tuning Derby and Multi-thread programming
tips.

Lock granularity
Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning

Derby Developer's Guide

81

off row-level locking, see "derby.storage.rowLocking" in the Derby Reference Manual.
For more information about automatic lock escalation, see "About the system's selection
of lock granularity" and "Transaction-based lock escalation" in Tuning Derby. For more
information on tuning your Derby system, see "Tuning databases and applications," also
in Tuning Derby.

Types and scope of locks in Derby systems
There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.
Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data.

This lock remains in place until the transaction holding the lock issues a commit or
rollback. Table-level locking lowers concurrency in a multi-user system.
Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data.

Another transaction that tries to read the same data is permitted to read, but
a transaction that tries to update the data will be prevented from doing so
until the shared lock is released. How long this shared lock is held depends
on the isolation level of the transaction holding the lock. Transactions using
the TRANSACTION_READ_COMMITTED isolation level release the lock
when the transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ
isolation level hold the lock until the transaction is committed, so even a SELECT
can prevent updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.
Update locks

When a user-defined update cursor (created with the FOR UPDATE clause or by using
concurrency mode ResultSet.CONCUR_UPDATABLE) reads data, its transaction
obtains an update lock on the data.

If the user-defined update cursor updates the data, the update lock is converted to an
exclusive lock. If the cursor does not update the row, when the transaction steps through
to the next row, transactions using the TRANSACTION_READ_COMMITTED isolation
level release the lock. (For update locks, the TRANSACTION_READ_UNCOMMITTED
isolation level acts the same way as TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.
Lock compatibility

The following table shows the compatibility between lock types. "Yes" means that the
lock types are compatible, while "No" means that they are incompatible.

Table 9. Lock Compatibility Matrix

Lock Type Shared Update Exclusive
Shared Yes Yes No

Update Yes No No

Exclusive No No No

Derby Developer's Guide

82

Scope of locks

The amount of data locked by a statement can vary.

Table locks
A statement can lock the entire table.

Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a statement
cannot use an index. For example, UPDATES that cannot use an index lock the entire
table.

Row-level locking systems can lock entire tables if a high number of single-row locks
would be less efficient than a single table-level lock. Choosing table-level locking
instead of row-level locking for performance reasons is called lock escalation. For more
information about this topic, see "About the system's selection of lock granularity" and
"Transaction-based lock escalation" in Tuning Derby.

Single-row locks
A statement can lock only a single row at a time.

For row-level locking systems:
• For TRANSACTION_REPEATABLE_READ isolation, the locks are released at the

end of the transaction.
• For TRANSACTION_READ_COMMITTED isolation, Derby locks rows only as the

application steps through the rows in the result. The current row is locked. The row
lock is released when the application goes to the next row.

• For TRANSACTION_SERIALIZABLE isolation, however, Derby locks the whole set
before the application begins stepping through.

• For TRANSACTION_READ_UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the transaction is
committed. If there is an index associated with the table, the previous key is also locked.

Range locks
A statement can lock a range of rows (range lock).

For row-level locking systems:
• For any isolation level, Derby locks all the rows in the result plus an entire range of

rows for updates or deletes.
• For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows

in the result plus an entire range of rows in the table for SELECTs to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where the
salary is BETWEEN two values, the system can lock more than just the actual rows it
returns in the result. It also must lock the entire range of rows between those two values
to prevent another transaction from inserting, deleting, or updating a row within that
range.

An index must be available for a range lock. If one is not available, Derby locks the entire
table.

The following table summarizes the types and scopes of locking.

Table 10. Types and scopes of locking

Derby Developer's Guide

83

Transaction Isolation Level
Table-Level

Locking
Row-Level

Locking
Connection.TRANSACTION_READ_UNCOMMITTED
(SQL: UR)

For SELECT
statements,
table-level
locking is never
requested using
this isolation
level. For other
statements,
same as for TRANSACTION_READ_COMMITTED.

SELECT
statements
get no locks.
For other
statements,
same as for TRANSACTION_READ_COMMITTED.

Connection.TRANSACTION_READ_COMMITTED
(SQL: CS)

SELECT
statements
get a shared
lock on the
entire table.
The locks are
released when
the user closes
the ResultSet.
Other
statements get
exclusive locks
on the entire
table, which are
released when
the transaction
commits.

SELECTs lock
and release
single rows
as the user
steps through
the ResultSet.
UPDATEs and
DELETEs get
exclusive locks
on a range of
rows. INSERT
statements
get exclusive
locks on single
rows (and
sometimes on
the preceding
rows).

Connection.TRANSACTION_REPEATABLE_READ
(SQL: RS)

Same as for TRANSACTION_SERIALIZABLESELECT
statements get
shared locks
on the rows
that satisfy the
WHERE clause
(but do not
prevent inserts
into this range).
UPDATEs and
DELETEs get
exclusive locks
on a range of
rows. INSERT
statements
get exclusive
locks on single
rows (and
sometimes on
the preceding
rows).

Connection.TRANSACTION_SERIALIZABLE (SQL:
RR)

SELECT
statements get
a shared lock

SELECT
statements get
shared locks

Derby Developer's Guide

84

Transaction Isolation Level
Table-Level

Locking
Row-Level

Locking
on the entire
table. Other
statements get
exclusive locks
on the entire
table, which are
released when
the transaction
commits.

on a range of
rows. UPDATE
and DELETE
statements get
exclusive locks
on a range of
rows. INSERT
statements
get exclusive
locks on single
rows (and
sometimes on
the preceding
rows).

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance
reasons.

Deadlocks
In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the
lock on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions. The following figure shows this
situation.

Figure 6. A deadlock where two transactions are waiting for one another to give up
locks

Derby Developer's Guide

85

Avoiding deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation
level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible.

Derby application developers can avoid deadlocks by using consistent application logic;
for example, transactions that access Accounts and Orders should always access the
tables in the same order. That way, in the scenario described above, Transaction B
simply waits for transaction A to release the lock on Orders before it begins. When
transaction A releases the lock on Orders, Transaction B can proceed freely.

The appropriate use of indexes can also help you to avoid deadlocks, since indexes
make table scans less likely and reduce the number of locks obtained. For more
information, see "CREATE INDEX statement" in the Derby Reference Manual and the
topics under "Avoiding table scans of large tables" in Tuning Derby.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt
to lock a table in exclusive mode when it starts to prevent other transactions from getting
shared locks on a table. For more information, see "LOCK TABLE statement" in the
Derby Reference Manual.
Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.

When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLState of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

ERROR 40001: A lock could not be obtained due to a deadlock,
cycle of locks & waiters is:

Derby Developer's Guide

86

Lock : ROW, DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update department set location='Boise'
 where deptno='E21'
Granted XID : {758, X} Lock : ROW, EMPLOYEE, (2,8)
Waiting XID : {758, U} , APP, update employee set bonus=150 where
 salary=23840
Granted XID : {752, X} The selected victim is XID : 752

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts.

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization
primitives are not detected by Derby.
Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs.

In such a situation, you might not want a transaction to wait indefinitely. Instead, you
might want the waiting transaction to abort, or time out, after a reasonable amount of
time, called a lock wait timeout.
Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property.

You configure the amount of time a transaction waits before timing out with the
derby.locks.waitTimeout property. When configuring your database or system,
you should consider these properties together. For example, in order for any deadlock
checking to occur, the derby.locks.deadlockTimeout property must be set to a
value lower than the derby.locks.waitTimeout property. If it is set to a value equal
to or higher than the derby.locks.waitTimeout, the transaction times out before
Derby does any deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait
timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

In the following figure, derby.locks.deadlockTimeout is set to 30 seconds, while
derby.locks.waitTimeout has no limit.

Figure 7. Configuration with deadlock checking after 30 seconds and no lock wait
timeouts

Derby Developer's Guide

87

In the following figure, derby.locks.deadlockTimeout is set to 60 seconds, while
derby.locks.waitTimeout is set to 90 seconds.

Figure 8. Configuration with deadlock checking after 60 seconds and lock wait
timeout at 90 seconds

In the following figure, derby.locks.deadlockTimeout is set to 60 seconds, while
derby.locks.waitTimeout is set to 50 seconds, lower than the deadlock timeout
limit.

Figure 9. Configuration with no deadlock checking and a 50-second lock wait
timeout

Derby Developer's Guide

88

Debugging deadlocks

If deadlocks occur frequently in your multi-user system with a particular application, you
might need to do some debugging.

Derby provides the SYSCS_DIAG.LOCK_TABLE diagnostic table to help you debug
deadlocks. This diagnostic table shows all of the locks that are currently held in the Derby
database. You can reference the SYSCS_DIAG.LOCK_TABLE diagnostic table directly
in a statement.

For example:

SELECT * FROM SYSCS_DIAG.LOCK_TABLE

When the SYSCS_DIAG.LOCK_TABLE diagnostic table is referenced in a statement, a
snapshot of the lock table is taken.

For more information about how to use this table, see "SYSCS_DIAG.LOCK_TABLE
diagnostic table" in the Derby Reference Manual.

You can also set the property derby.locks.deadlockTrace to dump additional information
to the derby.log file about any deadlocks that occur on your system. See Derby
Reference Manual for more information on this property. Also see "Monitoring deadlocks"
in the Derby Server and Administration Guide.

Additional general information about diagnosing locking problems can be found in the
Derby Wiki at http://wiki.apache.org/db-derby/LockDebugging.
Programming applications to handle deadlocks

When you configure your system for deadlock and lockwait timeouts and an application
could be chosen as a victim when the transaction times out, you should program your
application to handle them.

To do this, test for SQLExceptions with SQLStates of 40001 (deadlock timeout) or 40XL1
(lockwait timeout).

In the case of a deadlock you might want to re-try the transaction that was chosen as a
victim. In the case of a lock wait timeout, you probably do not want to do this right away.

The following code is one example of how to handle a deadlock timeout.

/// if this code might encounter a deadlock,

	Cover
	Contents
	Copyright
	License
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	After installing
	The installation directory
	Batch files and shell scripts

	Derby and Java Virtual Machines (JVMs)
	Derby libraries and classpath
	UNIX-specific issues
	Configuring file descriptors
	Scripts

	Upgrades
	Preparing to upgrade
	Upgrading a database

	JDBC applications and Derby basics
	Application development overview
	Derby embedded basics
	Derby JDBC driver
	Derby JDBC database connection URL
	Derby system
	One Derby instance for each Java Virtual Machine (JVM)
	Booting databases
	Shutting down the system
	Defining the system directory
	The error log
	derby.properties
	Double-booting system behavior
	Recommended practices

	A Derby database
	The database directory
	Creating, dropping, and backing up databases
	Single database shutdown
	Storage and recovery
	Log on separate device
	Database pages
	Database-wide properties
	Derby database limitations

	Connecting to databases
	Connecting to databases within the system
	Connecting to databases outside the system directory
	Conventions for specifying the database path
	Special database access
	Accessing databases from the classpath
	Accessing databases from a jar or zip file

	Database connection examples

	Working with the database connection URL attributes
	Using the databaseName attribute
	Shutting down Derby or an individual database
	Creating and accessing a database
	Providing a user name and password
	Creating a database with locale-based collation
	Creating a case-insensitive database
	Creating a customized collator
	Specifying attributes in a properties object

	Using in-memory databases
	Working with Derby
properties
	Properties overview
	Scope of properties
	Persistence of properties
	Precedence of properties
	Protection of database-wide properties

	Dynamic versus static properties

	Setting Derby properties
	Setting system-wide properties
	Changing the system-wide properties programmatically
	Changing the system-wide properties by using the derby.properties file
	Verifying system properties

	Setting database-wide properties
	Setting properties in a client/server environment
	Making dynamic or static changes to properties

	Properties case study

	Deploying Derby applications
	Deployment issues
	Embedded deployment application overview
	Deploying Derby in an embedded environment
	Embedded systems and properties

	Creating Derby databases for read-only use
	Creating and preparing the database for read-only use
	Deploying the database on the read-only media
	Transferring read-only databases to archive (jar or zip) files
	Accessing a read-only database in a zip/jar file
	Accessing databases within a jar file using the classpath
	Databases on read-only media and DatabaseMetaData

	Loading classes from a database
	Class loading overview
	Create jar files for your application
	Add the jar file or files to the database
	Jar file examples
	Installing jar files
	Removing jar files
	Replacing jar files

	Enable database class loading with a property
	Code your applications

	Dynamic changes to jar files or to the database jar classpath
	Requirements for dynamic changes
	Notes on dynamic changes

	Derby server-side programming
	Programming database-side JDBC routines
	Database-side JDBC routines and nested connections
	Requirements for database-side JDBC routines using nested connections

	Database-side JDBC routines using non-nested connections
	Invoking a procedure using the CALL command

	Database-side JDBC routines and SQLExceptions
	User-defined SQLExceptions

	Programming trigger actions
	Trigger action overview
	Performing referential actions
	Accessing before and after rows
	Examples of trigger actions
	Triggers and exceptions
	Aborting statements and transactions

	Programming
Derby-style table
functions
	Overview of
Derby-style table
functions
	Preferred getXXX() methods for
Derby-style table
functions

	Example Derby-style
table function
	Writing restricted table functions
	Optimizer support for
Derby-style table
functions
	Measuring the cost of
Derby-style table
functions
	Example VTICosting implementation

	Programming user-defined types
	Programming user-defined aggregates

	Controlling Derby application behavior
	The JDBC connection and transaction model
	Connections
	Statements
	ResultSets and Cursors
	Nested connections

	Transactions
	Transactions when auto-commit is disabled
	Using auto-commit
	Turning off auto-commit
	Explicitly closing Statements, ResultSets, and Connections
	Statement versus transaction runtime rollback
	Using savepoints

	Result set and cursor mechanisms
	Simple non-updatable result sets
	Updatable result sets
	Requirements for updatable result sets
	Forward only updatable result sets
	Scrollable updatable result sets
	Inserting rows with updatable result sets
	Naming or accessing the name of a cursor
	Extended updatable result set example

	Result sets and auto-commit
	Scrollable result sets
	Holdable result sets
	Holdable result sets and autocommit
	Non-holdable result set example

	Locking, concurrency, and isolation
	Isolation levels and concurrency
	Configuring isolation levels
	Lock granularity
	Types and scope of locks in Derby systems
	Exclusive locks
	Shared locks
	Update locks
	Lock compatibility
	Scope of locks
	Notes on locking

	Deadlocks
	Avoiding deadlocks
	Deadlock detection
	Lock wait timeouts
	Configuring deadlock detection and lock wait timeouts
	Debugging deadlocks
	Programming applications to handle deadlocks

	Working with multiple connections to a single database
	Deployment options and threading and connection modes
	Multi-user database access
	Multiple connections from a single application

	Working with multiple threads sharing a single connection
	Pitfalls of sharing a connection among threads
	Multi-thread programming tips
	Example of threads sharing a statement

	Working with database threads in an embedded environment
	Working with Derby SQLExceptions in an application
	Information provided in SQL Exceptions
	Example of processing SQLExceptions

	Using Derby as a Java EE resource manager
	Classes that pertain to resource managers
	Getting a DataSource
	Shutting down or creating a database

	Configuring security for
Derby
	Identity in Derby
	Basic security configuration tasks
	Configuring security in a client/server environment
	Configuring security in an embedded environment

	Working with user authentication
	Using NATIVE authentication
	Enabling user authentication
	Defining users
	External directory service
	LDAP directory service
	Setting up Derby to
use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	LDAP restrictions

	JNDI-specific properties for external directory services
	User-defined class
	Example of setting a user-defined class

	BUILTIN Derby users
	Database-level properties
	System-level properties

	List of user authentication properties
	Programming applications for Derby user authentication
	Programming the application to provide the user and password
	Login failure exceptions with user authentication

	Users and authorization identifiers
	Authorization identifiers, user authentication, and user authorization
	Database owner

	User names and schemas
	Exceptions when using authorization identifiers

	User authorizations
	Setting the SQL standard authorization mode
	Using SQL standard authorization
	Privileges on views, triggers, and constraints
	Using SQL roles
	Upgrading an old database to use SQL standard authorization
	SQL standard authorization exceptions

	Setting the default connection access mode
	Setting access for individual users
	Read-only and full access permissions
	User authorization exceptions

	Encrypting databases on disk
	Requirements for Derby encryption
	Working with encryption
	Encrypting databases on creation
	Encrypting an existing unencrypted database
	Creating a boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Encrypting databases with a new key
	Encrypting databases with a new boot password
	Encrypting databases with a new external encryption key

	Booting an encrypted database
	Decrypting an encrypted database

	Signed jar files
	Notes on the Derby security features
	User authentication and authorization examples
	NATIVE authentication and SQL authorization example
	Setting LDAP user authentication properties in a client/server environment

	Running Derby under a security manager
	Granting permissions to Derby
	Examples of Java security policy files for embedded Derby
	Java security policy file example 1
	Java security policy file example 2
	Java security policy file example 3

	Developing tools and using Derby with an IDE
	Offering connection choices to the user
	The DriverPropertyInfo Array
	DriverPropertyInfo array example

	Using Derby with IDEs
	IDEs and multiple JVMs

	SQL tips
	Retrieving the database connection URL
	Supplying a parameter only once
	Defining an identity column
	Using third-party tools
	Tricks of the VALUES clause
	Multiple rows
	Mapping column values to return values
	Creating empty queries

	Localizing Derby
	SQL parser support for Unicode
	Character-based collation in
Derby
	How collation works in
Derby
	Locale-based collation
	Database connection URL attributes that control collation
	Examples of case-sensitive and case-insensitive string sorting
	Differences between LIKE and equal (=) comparisons

	Other components with locale support
	Messages libraries

	Derby and standards
	XML data types and operators

	Trademarks

