
UFR 919 – licence d'informatique – cours LU3IN009 SGBD

Cours 2 : Algèbre relationnelle

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -1

Problème général Comment évaluer une requête SQL efficacement? Le nom et le titre des employés qui travaillent dans des projets avec un budget > 250 et plus que 2 employés: SELECT DISTINCT Ename, Title FROM Emp, Project, Works WHERE Budget > 250 AND Emp.Eno=Works.Eno AND Project.Pno=Works.Pno AND Project.Pno=Works.Pno AND Project.Pno IN (SELECT Pno FROM Works GROUP BY Pno HAVING COUNT (*) > 2) UPMC-UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009) Algèbre relationnelle 4

1

Problème

•Requête SQL = expression *déclarative*

Plan d'exécution = programme impératif

Boucles, tests, ...

Opérations sur des tables et des index : algèbre

•Génération de tables et index temporaires

Problème: Comment trouver un plan d'exécution

•Correct : il fait ce que la requête "dit"

•Efficace : il le fait vite!

Problème complexe car de nombreux plans possibles (encore plus si la

BD est répartie)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -5

Langages d'Interrogation Relationnels

•SQL:

• langage « pratique » pour la programmation

Calcul relationnel:

• formules logiques qui décrivent le « sens » formel d'une requête SQL (sauf group by, order).

•Algèbre:

- composition d'opérations qui décrit une exécution possible d'une requête SQL / calcul
- ◆ Expression relationnelle (ex. la relation R) : retourne un ensemble de n-uplets (ex. le contenu de R)
- « algèbre » : on reste dans l'espace des expr. rel.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -7

Évaluation et optimisation de requêtes

- •Traitement de requêtes SQL
- •Algèbre relationnelle
- •Optimisation de requêtes

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -6

Algèbres relationnelles

- Algèbre ensembliste : opérateurs sur des *ensembles* de n-uplets (relations)
- Algèbre physique : opérateurs *implantés* dans un SGBD
- Pour un opérateur logique il existe généralement plusieurs opérateurs physiques qui l'implantent (choix d'opérateurs)
- Certains opérateurs physiques n'ont pas d'opérateur équivalent au niveau des ensembles (tri, group-by, ...) ou alors il faut considérer une *algèbre étendue*

Algèbre ⇔ calcul

algèbre étendue ⇔ SQL

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle étendue

- Inclus opérateurs pour group by, select avec doublon et order by
- Group by : opérateurs complexe à modéliser, surtout si clause having
- Select avec doublons : nécessite de changer de modèle (on ne travaille plus sur des ensembles, mais sur des « ensembles avec doublon »)
- Order by : nécessite de changer le modèle (on ne travaille plus sur des ensembles de n-uplets, mais sur des listes ordonnées)
- ⇒ Pour simplifier on étudiera principalement des requêtes sans group by, sans agrégats,sans doublons et sans order by

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -9

Opérateurs de l'algèbre relationnelle

Opérateurs de base :

- ◆sélection
- projection
- produit cartésien
- opérations ensemblistes: union, différence
- ▶renommage

Opérateurs dérivés :

- intersection
- →jointure
- →division

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -11

Algèbre relationnelle (ensembliste)

Opérateurs unaires :

```
<Op\acute{e}rateur>_{<parametres>}<Op\acute{e}rande> \rightarrow <R\acute{e}sultat>
```

Opérateurs binaires :

```
<\!\!Op\acute{e}rande\!\!> <\!\!Op\acute{e}rateur\!\!>_{<\!\!parametres\!\!>} <\!\!Op\acute{e}rande\!\!> \to <\!\!R\acute{e}sultat\!\!>
```

Langage *fermé*: les opérandes et les résultats sont *toujours* des relations (ensembles de n-uplets) → composition d'opérations

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -10

Sélection

Sélection d'un sous-ensemble de la relation opérande :

 $\sigma_{F}(R)$

•R est une expression relationnelle

F est une formule logique sans quantificateur composée de

opérandes: constantes et attributs

•opérateurs de comparaison :<, >, =, \neq , \leq , \geq

•opérateurs logiques : ∧, ∨ , ¬

Résultat : *sous-ensemble* des n-uplets de *R* qui satisfont la formule F

En SQL?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Exemple de sélection

EMP

	ENO	ENAME	TITLE
	E1	J. Doe	Elect. Eng.
l	E2	M. Smith	Syst. Anal.
l	E3	A. Lee	Mech. Eng.
l	E4	J. Miller	Programmer
l	E5	B. Casey	Syst. Anal.
l	E6	L. Chu	Elect. Eng.
١	E7	R. Davis	Mech. Eng.
	E8	J. Jones	Syst. Anal.

σ _{TITLE='Elect. Eng.'} (EMP)					
ENO	ENAME	TITLE			
E1	J. Doe	Elect. End			

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -13

Exemple de projection

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000
P5	CAD/CAM	500000

 $\Pi_{\mathsf{PNO},\mathsf{BUDGET}}(\mathsf{PROJ})$

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000
P5	500000

$\Pi_{PNAME}(PROJ)$

PNAME
Instrumentation
Database Develop.
CAD/CAM
Maintenance

Deux sémantiques :

- Ensembliste : élimination des *n-uplets doublons*
- SQL : avec doublons => distinct.

Pourquoi?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -15

Projection

Projection sur un ensemble d'attributs d'une relation

$$\mathbf{T}_{A_1,\ldots,A_n}(R)$$

•R est une expr. relationnelle

 $\{A_1, ..., A_n\}$ est un sous-ensemble des attributs de R

Résultat : ensemble de n-uplets de R sans les attributs (colonnes) qui ne se trouvent pas dans $\{A_1, \ldots, A_n\}$ En SQL ?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -14

Produit cartésien

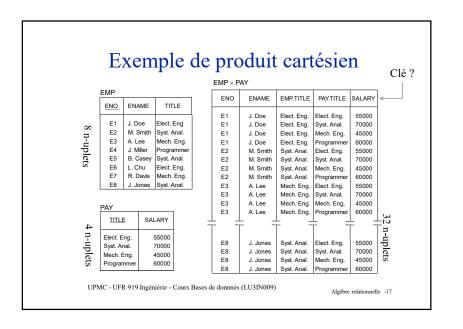
Produit cartésien entre deux tables :

$$R \times S$$

 ${}_{\bullet}R$ est une table de degré k_1 cardinalité n_1

S est une table de degré k_2 cardinalité n_2

Résultat : relation de *degré* $(k_1 + k_2)$ et contient $(n_1 * n_2)$ nuplets, où chaque n-uplet est la *concaténation* d'un n-uplet de R avec un n-uplet de S.


En SQL

Select ... from R, S

where <pas de lien entre R et S>

(« Monsieur c'est bloqué! »)?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Union

Union ensembliste entre deux tables :

 $R \cup S$

•R et S sont des relations *compatibles pour l'union* (même arité et domaines d'attributs)

Résultat : n-uplets qui sont dans R ou dans S

AY1			PAY2	
TITLE	SALARY		TITLE	SALARY
Elect. Eng. Syst. Anal. Mech. Eng.	55000 70000 45000	\supset	Syst. Anal. Mech. Eng. Programmer	73100 <i>45000</i> 60000

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -18

Différence

Différence ensembliste entre deux tables :

$$R-S$$

R et S sont des relations *compatibles* pour l'union.

Résultat : n-uplets qui sont dans R, mais pas dans S

PAY1			PAY2			PAY1	DAV2
TITLE	SALARY		TITLE	SALARY		TITLE	SALARY
Elect. Eng. Syst. Anal. Mech. Eng.	55000 70000 45000	_	Syst. Anal. Mech. Eng. Programmer	73100 <i>45000</i> 60000	=	Elect. Eng. Syst. Anal.	55000 70000

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -19

Renommage

Renommage de plusieurs attributs d'une table :

$$\rho_{A_1,\ldots,A_n} \longrightarrow_{B_1,\ldots,B_n} (R)$$

R est une relation

 $\{A_1, ..., A_n\}$ est un sous-ensemble des attributs de R $\{B_1, ..., B_n\}$ est un ensemble d'attributs

Résultat : une relation avec les mêmes n-uplets (le même contenu) où chaque attribut A_i a été renommé en B_i

On note aussi $R_{A1 \rightarrow B1, A2 \rightarrow B2...}$

On peut aussi renommer la relation R en S, noté R

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Exemple de renommage

•EMP(ENO, TITLE, ENAME)

 ${}^{\bullet}$ ρ _{TITLE,ENAME \rightarrow JOB, NOM} (EMP) change le schéma de la relation EMP en EMP (ENO, NOM, JOB)

• ne change rien au contenu

EMP					
ENO	ENAME	TITLE			
E1	J. Doe	Elect. Eng			
E2	M. Smith	Syst. Anal.			
E3	A. Lee	Mech. Eng.			
E4	J. Miller	Programmer			
E5	B. Casey	Syst. Anal.			
E6	L. Chu	Elect. Eng.			
E7	R. Davis	Mech. Eng.			
E8	J. Jones	Syst. Anal.			

	ENO	NOM	JOB
$\rho_{TITLE,ENAME \rightarrow JOB, NOR}$	E1 M E2	J. Doe M. Smith	Elect. Eng Syst. Anal.
, , , , , , , , , , , , , , , , , , , ,	E3	A. Lee	Mech. Eng.
─	E4	J. Miller	Programmer
	E5	B. Casey	Syst. Anal.
	E6	L. Chu	Elect. Eng.
	E7	R. Davis	Mech. Eng.
	E8	J. Jones	Syst. Anal.

EMP

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -21

Intersection

Intersection de deux tables:

$$R \cap S = R - (R - S)$$

R, S sont deux tables compatibles (attributs deux à deux de même domaine)

Résultat : ensemble de n-uplets qui se trouvent à la fois dans R *et* dans S

ı	PAY1					
	TITLE	SALARY				
	Elect. Eng. Syst. Anal. Mech. Eng.	55000 70000 45000				

PAY1	PAY2
TITLE	SALARY
Mech. Eng.	45000

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -23

Opérateurs de l'algèbre relationnelle

Opérateurs de base :

- ◆sélection
- projection
- produit cartésien
- opérations ensemblistes: union, différence
- **→**renommage

Opérateurs dérivés :

- intersection
- •jointure
- division

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -22

Jointure

Jointure entre deux tables R et S:

$$R \bowtie_F S = \sigma_F(R \times S)$$

R et S sont des relations (sans attributs en commun)

F est une formule logique composée d'au moins un atome de la forme A_i θ B_i où

 $\theta \in \{<,>,=,\neq,\leq,\geq\}$, A_i est un attribut de $R,\,B_i$ est un attribut de S

Résultat : sous-ensemble des n-uplets dans le produit cartésien $R \times S$ qui satisfont la formule F

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Types de jointure

θ -jointure (théta-jointure)

la formule F utilise les comparaisons <, >, \neq , \leq , \geq

Equi-jointure

la formule F n'utilise que l'égalité : =

 $R\bowtie_{RA=S,B} S$

Jointure naturelle : R(X,Y), S(X, Y')

Equi-jointure où on élimine les attributs en communs

$$R \bowtie S = \prod_{R,X,R,Y,S,Y'} \sigma_F(R \times S) = \prod_{S,X,R,Y,S,Y'} \sigma_F(R \times S)$$

la condition de jointure F est R.X = S.X (X représente tous les attributs en commun entre R et S)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -25

Exemple de θ -jointure

ı	EMP							
	ENO	ENAME	TITLE	CONTR				
	E1	J. Doe	Elect. Eng	12				
	E2	M. Smith	Syst. Anal.	12				
	E3	A. Lee	Mech. Eng.	12				
	E4	J. Miller	Programmer	24				
	E5	B. Casey	Syst. Anal.	24				
	E6	L. Chu	Elect. Eng.	36				
	E7	R. Davis	Mech. Eng.	36				

	E2	M. Smith		Syst. Anal.	12
	E3	A. Le	е	Mech. Eng.	12
	E4	J. Mill	er	Programmer	24
	E5	B. Ca	sey	Syst. Anal.	24
	E6	L. Chu		Elect. Eng.	36
	E7	R. Davis		Mech. Eng.	36
	E8	J. Jones		Syst. Anal.	12
WORKS					
	ENO	DNIO		DECD	DUE

ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E7	P5	Engineer	23
E8	P3	Manager	40

EMP ⋈_{EMPENO=WORKS ENO ∧ CONTR<DUR}WORKS

EMP. ENO.	ENAME	TITLE	WORKS. ENO	PNO	RESP	DUR	CONTR
E2 E3 E6 E8	M. Smith A. Lee L. Chu J. Jones	Syst. Anal. Mech. Eng. Elect. Eng. Syst. Anal.		P1 P4 P4 P3	Manager Engineer Manager Manager	48 48	12 12 36 12

Résultat (en français)?

Contrats et leurs employés embauchés sur une durée inférieure à la durée de leur participation au projet.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -27

Exemple de jointure naturelle

EMP			
ENO	ENAME	TITLE	
E1	J. Doe	Elect. Eng	
E2	M. Smith	Syst. Anal.	
E3	A. Lee	Mech. Eng.	
E4	J. Miller	Programmer	
E5	B. Casey	Syst. Anal.	
E6	L. Chu	Elect. Eng.	
E7	R. Davis	Mech. Eng.	
E8	J. Jones	Syst. Anal.	

PAY			
TITLE	SALARY		
Elect. Eng. Syst. Anal. Mech. Eng.	55000 70000 45000		
Programmer	60000		

Clé? EMP ⋈ PAY SALARY ENO ENAME TITLE E1 J. Doe Elect. Ena. 55000 E2 M. Smith Analyst 70000 E3 A. Lee Mech. Eng. 45000 E4 J. Miller Programmer 60000 E5 B. Casey Syst. Anal. 70000 E6 L. Chu Elect. Eng. 55000 E7 R. Davis 45000 Mech. Eng. E8 J. Jones Syst. Anal.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -26

Division

Soient les relations R et S tels que le schéma de R contient tous les attributs de S

 $R(A_1,...,A_k,A_{k+1},...,A_{k+n})$ est de degré k+n et $S(A_1,...,A_k)$ de degré k.

La division de R par S:

$$T(A_{k+1},\ldots,A_{k+n})=R \div S$$

est la « plus grande » relation de degré n telle que

$$T \times S \subseteq R$$
.

 $R \div S$ contient les tuples de schéma $(A_{k+1},...,A_{k+n})$ qui sont associés, dans R, à tous les tuples de S.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Exemple de division

EMP

ENO	PNO	PNAME	BUDGET
E1 E2 E2 E3 E3 E4 E5 E6 E7 E8 E3	P1 P1 P2 P1 P4 P2 P2 P2 P4 P3 P3 P3	Instrumentation Instrumentation Database Develop. Instrumentation Maintenance Instrumentation Maintenance CAD/CAM CAD/CAM Database Develop.	150000 150000 135000 150000 310000 150000 150000 310000 250000 250000 135000
E3	P3	CAD/CAM	250000

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000

EMP÷**PROJ**

ENO E3

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -29

Expression de la division

Χ у1 x2 у1 x4 у1 x1 y2 х3 y2 x2 уЗ хЗ уЗ у3 х4 y4 x2 x3

x1 x2 x3

s

Exprimons T en fonction de R et S...

Y y1 y4

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -30

Remarques sur l'algèbre non étendue

Permet de retrouver toutes les valeurs contenues dans la BD (nuplets, n-uplets tronqués, n-uplets concaténés)

Et rien d'autre...

Certains opérateurs sont commutatifs $(R \bowtie \sigma_F(S)) = \sigma_F(R \bowtie S)$

D'autres ne le sont pas $\Pi_X(R-S) != \Pi_X(R) - \Pi_X(S)$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -31

Requêtes algébriques

Emp (Eno, Ename, Title, City)

Pay(<u>Title</u>, Salary)

Project(Pno, Pname, Budget, City)

Works(Eno, Pno, Resp, Dur)

Villes où il y a des employés ou des projets?

• $\Pi_{City}(Emp) \cup \Pi_{City}(Project)$

Villes où il y a des projets mais pas d'employés?

• $\Pi_{City}(Project) - \Pi_{City}(Emp)$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Requêtes algébriques

Emp (Eno, Ename, Title, City) Project(Pno, Pname, Budget, City)
Pay(Title, Salary) Works(Eno, Pno, Resp, Dur)

Noms des projets de budget > 225?

• Π Pname ($\sigma_{Budget>225}(Project)$)

Noms et budgets des projets où travaille l'employé E1?

- Π Pname, Budget(Project $\bowtie (\sigma_{Eno=`E1}, (Works)))$
- $\bullet \Pi_{Pname,\ Budget}(\sigma_{Project.Pno=Works.Pno}(Project \times \sigma_{Eno=`E1'}(Works)))$

Employés qui travaillent dans chaque projet?

 $\Pi_{Eno, Pno}(Works) \div \Pi_{Pno}(Project)$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

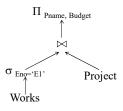
Algèbre relationnelle -33

Conclusion : algèbre relationnelle

- •L'algèbre relationnelle définit un ensemble d'opérations pour interroger une BD relationnelle
- «Les opérations peuvent être composées pour former des requêtes complexes
 - Avantage : facilite l'implantation d'un moteur de requêtes
 - Inconvénient : sémantique "opérationnelle"

L'algèbre « cache » la sémantique formelle (ensembliste) du modèle relationnel → calcul relationnel

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)


Algèbre relationnelle -35

Arbre algébrique

Comme toute expression algébrique, peut se représenter sous forme d'arbre.

Utile pour manipuler les requêtes (optimisation, vues) Exemple

 $\Pi_{Pname, Budget}(Project \bowtie \sigma_{Eno=`E1'}(Works)))$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Aloèbre relationnelle -34

Calcul de n-uplets et algèbre

•Théorème: Le calcul relationnel sûr et l'algèbre relationnelle ont une *puissance d'expression équivalente* (complétude relationnelle)

Autrement: toutes les requêtes qu'on peut exprimer en utilisant l'algèbre relationnelle (sélection, projection, jointure, ...) peuvent être exprimées dans le calcul relationnel sûr et vice-versa.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Traduction: sélection, projection, jointure

Deux tables : R(A,B,C) S(C,D)

$$\begin{split} & _{\text{J}}\Pi_{A,B}\left(\right.R\right) \qquad \equiv \left\{\right.t.A,\,t.B\mid R(t)\left.\right\} \\ & _{\text{J}}\Pi_{B}(\sigma_{A=3}(R)) \qquad \equiv \left\{\right.t.B\mid R(t)\wedge t.A=3\left.\right\} \\ & _{\text{J}}R\bowtie S \qquad \equiv \quad \left\{\right.t.A,\,t.B,\,t.C,\,u.D\mid R(t)\wedge S(u)\wedge t.C=u.C\left.\right\} \\ & _{\text{J}}\Pi_{C}\left(\right.R\left.\right) - \Pi_{C}\left(\right.S\left.\right) \equiv \left\{\right.t.C\mid R(t)\wedge \neg \exists u\left(S(u)\wedge t.C=u.C\right.\right) \end{split}$$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -37

Requêtes algébriques (suite)

Emp (Eno, Ename, Title, City) Project(Pno, Pname, Budget, City)
Pay(Title, Salary) Works(Eno, Pno, Resp, Dur)

- Projets ayant au moins deux employés?
- 2 Projets ayant exactement deux employés?
- 3. Couples d'employé (même nom, même ville)?
- 4. Quel grade (title) est le mieux payé?
- Quels sont les projets où tous les grades sont représentés ?
- Quels employés n'habitent pas la(es) ville(s) où ils travaillent ?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -39

Traduction de la division

 $R(A,B,C,D) \div S(C,D)$ s'exprime par la requête suivante :

$$R \div S = \{ x.A, x.B \mid R(x) \land \\ \forall u (S(u) \rightarrow \exists v (R(v) \land \\ v.A = x.A \land v.B = x.B \land \\ v.C = u.C \land v.D = u.D)) \}$$

Remarque : $F \rightarrow G$ est équivalent à $\neg F \lor G$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)

Algèbre relationnelle -38

-Sponsorise(NSp. NJo, Somme), -Joueur(NJo, Eq, Taille, Age), -Equipe(NEq, Ville, Couleur, StP) -Statch(Eq1, Eq2, Date, St), -Distance(St1, St2, NbKm)

Requêtes algébriques (TME)

- 1. Quelles équipes ont déjà joué au stade préféré de l'équipe des Piépla ?
- 2. Quels sont les joueurs qui ne sont pas sponsorisés par Adadis?
- 3. Quel est le(s) plus grand(s) joueur(s) sponsorisé par Adadis ?
- A quelle date a eu lieu un match entre deux équipes sponsorisées par le même sponsor?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (LU3IN009)